1
|
Sharma R, Mishra A, Bhardwaj M, Singh G, Indira Harahap LV, Vanjani S, Pan CH, Nepali K. Medicinal chemistry breakthroughs on ATM, ATR, and DNA-PK inhibitors as prospective cancer therapeutics. J Enzyme Inhib Med Chem 2025; 40:2489720. [PMID: 40256842 PMCID: PMC12013171 DOI: 10.1080/14756366.2025.2489720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/22/2025] Open
Abstract
This review discusses the critical roles of Ataxia Telangiectasia Mutated Kinase (ATM), ATM and Rad3-related Kinase (ATR), and DNA-dependent protein kinase (DNA-PK) in the DNA damage response (DDR) and their implications in cancer. Emphasis is placed on the intricate interplay between these kinases, highlighting their collaborative and distinct roles in maintaining genomic integrity and promoting tumour development under dysregulated conditions. Furthermore, the review covers ongoing clinical trials, patent literature, and medicinal chemistry campaigns on ATM/ATR/DNA-PK inhibitors as antitumor agents. Notably, the medicinal chemistry campaigns employed robust drug design strategies and aimed at assembling new structural templates with amplified DDR kinase inhibitory ability, as well as outwitting the pharmacokinetic liabilities of the existing DDR kinase inhibitors. Given the success attained through such endeavours, the clinical pipeline of DNA repair kinase inhibitors is anticipated to be supplemented by a reasonable number of tractable entries (DDR kinase inhibitors) soon.
Collapse
Affiliation(s)
- Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Anshul Mishra
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Monika Bhardwaj
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | | | - Sakshi Vanjani
- Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Chun Hsu Pan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
2
|
Wang J, Huang Y, Wang Z, Liu J, Liu Z, Yang J, He Z. The mTOR Signaling Pathway: Key Regulator and Therapeutic Target for Heart Disease. Biomedicines 2025; 13:397. [PMID: 40002810 PMCID: PMC11853667 DOI: 10.3390/biomedicines13020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Heart disease, including myocardial infarction, heart failure, cardiac hypertrophy, and cardiomyopathy, remains a leading cause of mortality worldwide. The mammalian target of rapamycin (mTOR) is a centrally regulated kinase that governs key cellular processes, including growth, proliferation, metabolism, and survival. Notably, mTOR plays a pivotal role in cardiovascular health and disease, particularly in the onset and progression of cardiac conditions. In this review, we discuss mTOR's structure and function as well as the regulatory mechanisms of its associated signaling pathways. We focus on the molecular mechanisms by which mTOR signaling regulates cardiac diseases and the potential of mTOR inhibitors and related regulatory drugs in preventing these conditions. We conclude that the mTOR signaling pathway is a promising therapeutic target for heart disease.
Collapse
Affiliation(s)
- Jieyu Wang
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (J.W.); (Y.H.); (Z.W.); (J.L.)
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, China
| | - Yuxuan Huang
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (J.W.); (Y.H.); (Z.W.); (J.L.)
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, China
| | - Zhaoxia Wang
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (J.W.); (Y.H.); (Z.W.); (J.L.)
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, China
| | - Jing Liu
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (J.W.); (Y.H.); (Z.W.); (J.L.)
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, China
| | - Zhijian Liu
- Department of Anesthesiology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya, School of Medicine, Central South University, Changsha 410013, China;
| | - Jinfeng Yang
- Department of Anesthesiology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya, School of Medicine, Central South University, Changsha 410013, China;
| | - Zuping He
- Department of Basic Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (J.W.); (Y.H.); (Z.W.); (J.L.)
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha 410013, China
| |
Collapse
|
3
|
Glorieux C, Enríquez C, Buc Calderon P. The complex interplay between redox dysregulation and mTOR signaling pathway in cancer: A rationale for cancer treatment. Biochem Pharmacol 2025; 232:116729. [PMID: 39709038 DOI: 10.1016/j.bcp.2024.116729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
The mechanistic target of rapamycin (mTOR) is a highly conserved serine/threonine kinase that plays a critical role in regulating cellular processes such as growth, proliferation, and metabolism in healthy cells. Dysregulation of mTOR signaling and oxidative stress have been implicated in various diseases including cancer. This review aims to provide an overview of the current understanding of mTOR and its involvement in cell survival and the regulation of cancer cell metabolism as well as its complex interplay with reactive oxygen species (ROS). On the one hand, ROS can inhibit or activate mTOR pathway in cancer cells through various mechanisms. Conversely, mTOR signaling can induce oxidative stress in tumor cells notably due to the inhibition in the expression of antioxidant enzyme genes. Since mTOR is often activated and plays crucial role in cancer cell survival, the use of mTOR inhibitors, which often induce ROS accumulation, could be an interesting approach for cancer treatment. This review will address the advantages, disadvantages, combination strategies, and limitations associated with therapeutic modulation of mTOR signaling pathway in cancer treatment.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 510060 Guangzhou, China.
| | - Cinthya Enríquez
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, 1100000 Iquique, Chile; Programa de Doctorado en Química Medicinal, Facultad de Ciencias de la Salud, Universidad Arturo Prat, 1100000 Iquique, Chile
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, 1100000 Iquique, Chile; Instituto de Química Medicinal, Universidad Arturo Prat, 1100000 Iquique, Chile; Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium.
| |
Collapse
|
4
|
Tuddenham JF, Taga M, Haage V, Marshe VS, Roostaei T, White C, Lee AJ, Fujita M, Khairallah A, Zhang Y, Green G, Hyman B, Frosch M, Hopp S, Beach TG, Serrano GE, Corboy J, Habib N, Klein HU, Soni RK, Teich AF, Hickman RA, Alcalay RN, Shneider N, Schneider J, Sims PA, Bennett DA, Olah M, Menon V, De Jager PL. A cross-disease resource of living human microglia identifies disease-enriched subsets and tool compounds recapitulating microglial states. Nat Neurosci 2024; 27:2521-2537. [PMID: 39406950 DOI: 10.1038/s41593-024-01764-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/13/2024] [Indexed: 12/06/2024]
Abstract
Human microglia play a pivotal role in neurological diseases, but we still have an incomplete understanding of microglial heterogeneity, which limits the development of targeted therapies directly modulating their state or function. Here, we use single-cell RNA sequencing to profile 215,680 live human microglia from 74 donors across diverse neurological diseases and CNS regions. We observe a central divide between oxidative and heterocyclic metabolism and identify microglial subsets associated with antigen presentation, motility and proliferation. Specific subsets are enriched in susceptibility genes for neurodegenerative diseases or the disease-associated microglial signature. We validate subtypes in situ with an RNAscope-immunofluorescence pipeline and high-dimensional MERFISH. We also leverage our dataset as a classification resource, finding that induced pluripotent stem cell model systems capture substantial in vivo heterogeneity. Finally, we identify and validate compounds that recapitulate certain subtypes in vitro, including camptothecin, which downregulates the signature of disease-enriched subtypes and upregulates a signature previously associated with Alzheimer's disease.
Collapse
Affiliation(s)
- John F Tuddenham
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY, USA
| | - Mariko Taga
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Verena Haage
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Victoria S Marshe
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Tina Roostaei
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Charles White
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Annie J Lee
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Masashi Fujita
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Anthony Khairallah
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ya Zhang
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Gilad Green
- Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bradley Hyman
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Matthew Frosch
- Neuropathology Service, C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Sarah Hopp
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | | | | | - John Corboy
- Department of Neurology, University of Colorado, and Rocky Mountain Multiple Sclerosis Center at the University of Colorado, Aurora, CO, USA
| | - Naomi Habib
- Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hans-Ulrich Klein
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Andrew F Teich
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Richard A Hickman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roy N Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Movement Disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Neil Shneider
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Eleanor and Lou Gehrig ALS Center, Columbia University Medical Center, New York, NY, USA
| | - Julie Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Marta Olah
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
5
|
Al-Lamki RS, Tolkovsky AM, Alawwami M, Lu W, Field SF, Wang J, Pober JS, Bradley JR. Tumor Necrosis Factor Receptor-2 Signals Clear-Cell Renal Carcinoma Proliferation via Phosphorylated 4E Binding Protein-1 and Mitochondrial Gene Translation. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1374-1387. [PMID: 38537932 DOI: 10.1016/j.ajpath.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 04/09/2024]
Abstract
Clear-cell renal cell carcinoma (ccRCC), a tubular epithelial malignancy, secretes tumor necrosis factor (TNF), which signals ccRCC cells in an autocrine manner via two cell surface receptors, TNFR1 and TNFR2, to activate shared and distinct signaling pathways. Selective ligation of TNFR2 drives cell cycle entry of malignant cells via a signaling pathway involving epithelial tyrosine kinase, vascular endothelial cell growth factor receptor type 2, phosphatidylinositol-3-kinase, Akt, pSer727-Stat3, and mammalian target of rapamycin. In this study, phosphorylated 4E binding protein-1 (4EBP1) serine 65 (pSer65-4EBP1) was identified as a downstream target of this TNFR2 signaling pathway. pSer65-4EBP1 expression was significantly elevated relative to total 4EBP1 in ccRCC tissue compared with that in normal kidneys, with signal intensity increasing with malignant grade. Selective ligation of TNFR2 with the TNFR2-specific mutein increased pSer65-4EBP1 expression in organ cultures that co-localized with internalized TNFR2 in mitochondria and increased expression of mitochondrially encoded COX (cytochrome c oxidase subunit) Cox1, as well as nuclear-encoded Cox4/5b subunits. Pharmacologic inhibition of mammalian target of rapamycin reduced both TNFR2-specific mutein-mediated phosphorylation of 4EBP1 and cell cycle activation in tumor cells while increasing cell death. These results signify the importance of pSer65-4EBP1 in mediating TNFR2-driven cell-cycle entry in tumor cells in ccRCC and implicate a novel relationship between the TNFR2/pSer65-4EBP1/COX axis and mitochondrial function.
Collapse
MESH Headings
- Humans
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/genetics
- Cell Cycle Proteins/metabolism
- Cell Cycle Proteins/genetics
- Cell Line, Tumor
- Cell Proliferation
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Kidney Neoplasms/genetics
- Mitochondria/metabolism
- Phosphoproteins/metabolism
- Phosphorylation
- Protein Biosynthesis
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Rafia S Al-Lamki
- Department of Medicine, National Institute of Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom.
| | - Aviva M Tolkovsky
- Department of Clinical Neurosciences, The Clifford Allbutt Building, University of Cambridge, Cambridge, United Kingdom
| | - Mohammad Alawwami
- Department of Medicine, National Institute of Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - WanHua Lu
- Department of Medicine, National Institute of Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Sarah F Field
- Dementia Research Institute, Island Research Building, University of Cambridge, Cambridge, United Kingdom
| | - Jun Wang
- Department of Medicine, National Institute of Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Jordan S Pober
- Department of Immunobiology, Yale University, New Haven, Connecticut
| | - John R Bradley
- Department of Medicine, National Institute of Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Jhanwar-Uniyal M, Zeller SL, Spirollari E, Das M, Hanft SJ, Gandhi CD. Discrete Mechanistic Target of Rapamycin Signaling Pathways, Stem Cells, and Therapeutic Targets. Cells 2024; 13:409. [PMID: 38474373 PMCID: PMC10930964 DOI: 10.3390/cells13050409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that functions via its discrete binding partners to form two multiprotein complexes, mTOR complex 1 and 2 (mTORC1 and mTORC2). Rapamycin-sensitive mTORC1, which regulates protein synthesis and cell growth, is tightly controlled by PI3K/Akt and is nutrient-/growth factor-sensitive. In the brain, mTORC1 is also sensitive to neurotransmitter signaling. mTORC2, which is modulated by growth factor signaling, is associated with ribosomes and is insensitive to rapamycin. mTOR regulates stem cell and cancer stem cell characteristics. Aberrant Akt/mTOR activation is involved in multistep tumorigenesis in a variety of cancers, thereby suggesting that the inhibition of mTOR may have therapeutic potential. Rapamycin and its analogues, known as rapalogues, suppress mTOR activity through an allosteric mechanism that only suppresses mTORC1, albeit incompletely. ATP-catalytic binding site inhibitors are designed to inhibit both complexes. This review describes the regulation of mTOR and the targeting of its complexes in the treatment of cancers, such as glioblastoma, and their stem cells.
Collapse
Affiliation(s)
- Meena Jhanwar-Uniyal
- Department of Neurosurgery, Westchester Medical Center, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | |
Collapse
|
7
|
Ihlamur M, Akgul B, Zengin Y, Korkut ŞV, Kelleci K, Abamor EŞ. The mTOR Signaling Pathway and mTOR Inhibitors in Cancer: Next-generation Inhibitors and Approaches. Curr Mol Med 2024; 24:478-494. [PMID: 37165594 DOI: 10.2174/1566524023666230509161645] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 05/12/2023]
Abstract
mTOR is a serine/threonine kinase that plays various roles in cell growth, proliferation, and metabolism. mTOR signaling in cancer becomes irregular. Therefore, drugs targeting mTOR have been developed. Although mTOR inhibitors rapamycin and rapamycin rapalogs (everolimus, rapamycin, temsirolimus, deforolimus, etc.) and new generation mTOR inhibitors (Rapalink, Dual PI3K/mTOR inhibitors, etc.) are used in cancer treatments, mTOR resistance mechanisms may inhibit the efficacy of these drugs. Therefore, new inhibition approaches are developed. Although these new inhibition approaches have not been widely investigated in cancer treatment, the use of nanoparticles has been evaluated as a new treatment option in a few types of cancer. This review outlines the functions of mTOR in the cancer process, its resistance mechanisms, and the efficiency of mTOR inhibitors in cancer treatment. Furthermore, it discusses the next-generation mTOR inhibitors and inhibition strategies created using nanoparticles. Since mTOR resistance mechanisms prevent the effects of mTOR inhibitors used in cancer treatments, new inhibition strategies should be developed. Inhibition approaches are created using nanoparticles, and one of them offers a promising treatment option with evidence supporting its effectiveness.
Collapse
Affiliation(s)
- Murat Ihlamur
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
- Department of Electronics and Automation, Biruni University, Istanbul, Turkey
| | - Busra Akgul
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Yağmur Zengin
- Biomedical Engineering Institute, Department of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | - Şenay Vural Korkut
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkey
| | - Kübra Kelleci
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
- Department of Medical Services and Techniques, Beykoz University, Istanbul, Turkey
| | - Emrah Şefik Abamor
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
8
|
Dewdney B, Jenkins MR, Best SA, Freytag S, Prasad K, Holst J, Endersby R, Johns TG. From signalling pathways to targeted therapies: unravelling glioblastoma's secrets and harnessing two decades of progress. Signal Transduct Target Ther 2023; 8:400. [PMID: 37857607 PMCID: PMC10587102 DOI: 10.1038/s41392-023-01637-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
Glioblastoma, a rare, and highly lethal form of brain cancer, poses significant challenges in terms of therapeutic resistance, and poor survival rates for both adult and paediatric patients alike. Despite advancements in brain cancer research driven by a technological revolution, translating our understanding of glioblastoma pathogenesis into improved clinical outcomes remains a critical unmet need. This review emphasises the intricate role of receptor tyrosine kinase signalling pathways, epigenetic mechanisms, and metabolic functions in glioblastoma tumourigenesis and therapeutic resistance. We also discuss the extensive efforts over the past two decades that have explored targeted therapies against these pathways. Emerging therapeutic approaches, such as antibody-toxin conjugates or CAR T cell therapies, offer potential by specifically targeting proteins on the glioblastoma cell surface. Combination strategies incorporating protein-targeted therapy and immune-based therapies demonstrate great promise for future clinical research. Moreover, gaining insights into the role of cell-of-origin in glioblastoma treatment response holds the potential to advance precision medicine approaches. Addressing these challenges is crucial to improving outcomes for glioblastoma patients and moving towards more effective precision therapies.
Collapse
Affiliation(s)
- Brittany Dewdney
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia.
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia.
| | - Misty R Jenkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Sarah A Best
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Saskia Freytag
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Krishneel Prasad
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Jeff Holst
- School of Biomedical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Raelene Endersby
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| | - Terrance G Johns
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
9
|
Hellmold D, Kubelt C, Daunke T, Beckinger S, Janssen O, Hauck M, Schütt F, Adelung R, Lucius R, Haag J, Sebens S, Synowitz M, Held-Feindt J. Sequential Treatment with Temozolomide Plus Naturally Derived AT101 as an Alternative Therapeutic Strategy: Insights into Chemoresistance Mechanisms of Surviving Glioblastoma Cells. Int J Mol Sci 2023; 24:ijms24109075. [PMID: 37240419 DOI: 10.3390/ijms24109075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Glioblastoma (GBM) is a poorly treatable disease due to the fast development of tumor recurrences and high resistance to chemo- and radiotherapy. To overcome the highly adaptive behavior of GBMs, especially multimodal therapeutic approaches also including natural adjuvants have been investigated. However, despite increased efficiency, some GBM cells are still able to survive these advanced treatment regimens. Given this, the present study evaluates representative chemoresistance mechanisms of surviving human GBM primary cells in a complex in vitro co-culture model upon sequential application of temozolomide (TMZ) combined with AT101, the R(-) enantiomer of the naturally occurring cottonseed-derived gossypol. Treatment with TMZ+AT101/AT101, although highly efficient, yielded a predominance of phosphatidylserine-positive GBM cells over time. Analysis of the intracellular effects revealed phosphorylation of AKT, mTOR, and GSK3ß, resulting in the induction of various pro-tumorigenic genes in surviving GBM cells. A Torin2-mediated mTOR inhibition combined with TMZ+AT101/AT101 partly counteracted the observed TMZ+AT101/AT101-associated effects. Interestingly, treatment with TMZ+AT101/AT101 concomitantly changed the amount and composition of extracellular vesicles released from surviving GBM cells. Taken together, our analyses revealed that even when chemotherapeutic agents with different effector mechanisms are combined, a variety of chemoresistance mechanisms of surviving GBM cells must be taken into account.
Collapse
Affiliation(s)
- Dana Hellmold
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany
| | - Carolin Kubelt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany
| | - Tina Daunke
- Institute of Experimental Cancer Research, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany
| | - Silje Beckinger
- Institute of Experimental Cancer Research, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany
| | - Ottmar Janssen
- Institute for Immunology, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany
| | - Margarethe Hauck
- Functional Nanomaterials, Department of Materials Science, Kiel University, 24143 Kiel, Germany
| | - Fabian Schütt
- Functional Nanomaterials, Department of Materials Science, Kiel University, 24143 Kiel, Germany
| | - Rainer Adelung
- Functional Nanomaterials, Department of Materials Science, Kiel University, 24143 Kiel, Germany
| | - Ralph Lucius
- Institute of Anatomy, Kiel University, 24098 Kiel, Germany
| | - Jochen Haag
- Department of Pathology, Kiel University, 24105 Kiel, Germany
| | - Susanne Sebens
- Institute of Experimental Cancer Research, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany
| | - Michael Synowitz
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
10
|
Li M, Yu J, Deng H, Xie S, Li Q, Zhao Y, Yin S, Ji YF. Upregulation of glutamate transporter 1 by mTOR/Akt pathway in astrocyte culture during oxygen-glucose deprivation and reoxygenation. Exp Brain Res 2023; 241:201-209. [PMID: 36436003 DOI: 10.1007/s00221-022-06514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/16/2022] [Indexed: 11/28/2022]
Abstract
Astrocyte-specific glutamate transporter subtype 1 (GLT-1) plays an important role in influencing glutamate excitatory toxicity and preventing the death of excitatory toxic neurons. Although the mammalian target of rapamycin (mTOR)/protein kinase B(Akt)/nuclear factor kappa B signaling cascade is involved in the upregulation of astrocytic GLT-1 in oxygen-glucose deprivation (OGD), it is unclear whether the mTOR/Akt pathway is involved in astrocytic GLT-1 upregulation in OGD and reoxygenation (OGD/R). In this study, we found that the treatment of cultured astrocytes with rapamycin and triciribine led to the decreased astrocytes' protrusions, smaller nuclei, and an increased apoptotic rate. The inhibitors of mTOR complex 1 significantly increased the expression levels of phosphorylated Akt-Ser473 (p-Akt), phosphorylated Akt-Thr308(p-Akt), and GLT-1, while Akt-specific inhibitors blocked GLT-1 expression, suggesting that the mTOR/Akt pathway is involved in GLT-1 upregulation. We further demonstrated that astrocytes under OGD/R adapted to environmental changes through the mTOR/Akt pathway, mainly by altering cell morphology and apoptosis and upregulating the expression levels of p-Akt and GLT-1. Our results suggested that astrocytes may adapt to short-term ischemic-reperfusion injury by regulating cell morphology, apoptosis and GLT-1 upregulation.
Collapse
Affiliation(s)
- Mi Li
- Department of Neurology, Second Clinical College, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
- Department of Neurology, Yilong County People's Hospital, Nanchong, Sichuan, People's Republic of China
| | - Jingmei Yu
- Department of Neurology, Second Clinical College, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Huan Deng
- Department of Neurology, Second Clinical College, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Shansha Xie
- Department of Neurology, Second Clinical College, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Qiuling Li
- Department of Neurology, Second Clinical College, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Yuping Zhao
- Department of Neurology, Second Clinical College, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Shubin Yin
- Department of Neurology, Second Clinical College, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Yi-Fei Ji
- Department of Neurology, Second Clinical College, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China.
| |
Collapse
|
11
|
Jhanwar-Uniyal M, Gellerson O, Bree J, Das M, Kleinman G, Gandhi CD. Defining the role of mTOR pathway in the regulation of stem cells of glioblastoma. Adv Biol Regul 2022; 88:100946. [PMID: 36658088 DOI: 10.1016/j.jbior.2022.100946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/01/2023]
Abstract
The mechanistic target of rapamycin (mTOR), a serine/threonine kinase, functions by forming two multiprotein complexes termed mTORC1 and mTORC2. Glioblastoma (GBM) is a uniformly fatal brain tumor that remains incurable partly due to the existence of untreatable cancer stem cells (CSC). The pathogenesis of GBM is largely due to the loss of the tumor suppressor gene PTEN, which is implicated in the aberrant activation of the mTOR pathway. The major cause of tumor recurrence, growth, and invasion is the presence of the unique population of CSC. Resistance to conventional therapies appears to be caused by both extensive genetic abnormalities and dysregulation of the transcription landscape. Consequently, CSCs have emerged as targets of interest in new treatment paradigms. Evidence suggests that inhibition of the mTOR pathway can also be applied to target CSCs. Here we explored the role of the mTOR pathway in the regulation of stem cells of GBM by treating them with inhibitors of canonical PI3K/AKT/mTOR pathways such as rapamycin (mTORC1 inhibitor), PP242 (ATP binding mTORC1/2 inhibitor), LY294002 (PI3K inhibitor), and MAPK inhibitor, U0126. A significant number of GBM tumors expressed stem cell marker nestin and activated mTOR (pmTORSer2448), with most tumor cells co-expressing both markers. The expression of stem cell marker NANOG was suppressed following rapamycin treatment. The neurospheres were disrupted following rapamycin and LY294002 treatments. Rapamycin or PP242 along with differentiating agent All-trans-retinoic acid reduced stem cell proliferation. Treatment with novel small molecule inhibitors of mTORC1/2 demonstrated that Torin1 and Torin2 suppressed the proliferation of GBM CSC, while XL388 was less effective. Torin1 and XL388 delay the process of self-renewal as compared to controls, whereas Torin2 halted self-renewal. Torin2 was able to eradicate tumor cells. In conclusion, Torin2 effectively targeted CSCs of GBM by halting self-renewal and inhibiting cell proliferation, underscoring the use of Torin2 in the treatment of GBM.
Collapse
Affiliation(s)
- Meena Jhanwar-Uniyal
- Department of Neurosurgery, New York Medical College/Westchester Medical Center, Valhalla, NY, 10595, USA.
| | - Olivia Gellerson
- Department of Neurosurgery, New York Medical College/Westchester Medical Center, Valhalla, NY, 10595, USA
| | - Julie Bree
- Department of Neurosurgery, New York Medical College/Westchester Medical Center, Valhalla, NY, 10595, USA
| | - Mohan Das
- Department of Neurosurgery, New York Medical College/Westchester Medical Center, Valhalla, NY, 10595, USA
| | - George Kleinman
- Department of Pathology, New York Medical College/Westchester Medical Center, Valhalla, NY, 10595, USA
| | - Chirag D Gandhi
- Department of Neurosurgery, New York Medical College/Westchester Medical Center, Valhalla, NY, 10595, USA
| |
Collapse
|
12
|
Wu H, Wei M, Li Y, Ma Q, Zhang H. Research Progress on the Regulation Mechanism of Key Signal Pathways Affecting the Prognosis of Glioma. Front Mol Neurosci 2022; 15. [DOI: https:/doi.org/10.3389/fnmol.2022.910543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
As is known to all, glioma, a global difficult problem, has a high malignant degree, high recurrence rate and poor prognosis. We analyzed and summarized signal pathway of the Hippo/YAP, PI3K/AKT/mTOR, miRNA, WNT/β-catenin, Notch, Hedgehog, TGF-β, TCS/mTORC1 signal pathway, JAK/STAT signal pathway, MAPK signaling pathway, the relationship between BBB and signal pathways and the mechanism of key enzymes in glioma. It is concluded that Yap1 inhibitor may become an effective target for the treatment of glioma in the near future through efforts of generation after generation. Inhibiting PI3K/Akt/mTOR, Shh, Wnt/β-Catenin, and HIF-1α can reduce the migration ability and drug resistance of tumor cells to improve the prognosis of glioma. The analysis shows that Notch1 and Sox2 have a positive feedback regulation mechanism, and Notch4 predicts the malignant degree of glioma. In this way, notch cannot only be treated for glioma stem cells in clinic, but also be used as an evaluation index to evaluate the prognosis, and provide an exploratory attempt for the direction of glioma treatment. MiRNA plays an important role in diagnosis, and in the treatment of glioma, VPS25, KCNQ1OT1, KB-1460A1.5, and CKAP4 are promising prognostic indicators and a potential therapeutic targets for glioma, meanwhile, Rheb is also a potent activator of Signaling cross-talk etc. It is believed that these studies will help us to have a deeper understanding of glioma, so that we will find new and better treatment schemes to gradually conquer the problem of glioma.
Collapse
|
13
|
Wu H, Wei M, Li Y, Ma Q, Zhang H. Research Progress on the Regulation Mechanism of Key Signal Pathways Affecting the Prognosis of Glioma. Front Mol Neurosci 2022; 15:910543. [PMID: 35935338 PMCID: PMC9354928 DOI: 10.3389/fnmol.2022.910543] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
As is known to all, glioma, a global difficult problem, has a high malignant degree, high recurrence rate and poor prognosis. We analyzed and summarized signal pathway of the Hippo/YAP, PI3K/AKT/mTOR, miRNA, WNT/β-catenin, Notch, Hedgehog, TGF-β, TCS/mTORC1 signal pathway, JAK/STAT signal pathway, MAPK signaling pathway, the relationship between BBB and signal pathways and the mechanism of key enzymes in glioma. It is concluded that Yap1 inhibitor may become an effective target for the treatment of glioma in the near future through efforts of generation after generation. Inhibiting PI3K/Akt/mTOR, Shh, Wnt/β-Catenin, and HIF-1α can reduce the migration ability and drug resistance of tumor cells to improve the prognosis of glioma. The analysis shows that Notch1 and Sox2 have a positive feedback regulation mechanism, and Notch4 predicts the malignant degree of glioma. In this way, notch cannot only be treated for glioma stem cells in clinic, but also be used as an evaluation index to evaluate the prognosis, and provide an exploratory attempt for the direction of glioma treatment. MiRNA plays an important role in diagnosis, and in the treatment of glioma, VPS25, KCNQ1OT1, KB-1460A1.5, and CKAP4 are promising prognostic indicators and a potential therapeutic targets for glioma, meanwhile, Rheb is also a potent activator of Signaling cross-talk etc. It is believed that these studies will help us to have a deeper understanding of glioma, so that we will find new and better treatment schemes to gradually conquer the problem of glioma.
Collapse
Affiliation(s)
- Hao Wu
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Min Wei
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Yuping Li
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Qiang Ma
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| | - Hengzhu Zhang
- Graduate School of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian, China
| |
Collapse
|
14
|
Bruno G, Bergolis VL, Piscazzi A, Crispo F, Condelli V, Zoppoli P, Maddalena F, Pietrafesa M, Giordano G, Matassa DS, Esposito F, Landriscina M. TRAP1 regulates the response of colorectal cancer cells to hypoxia and inhibits ribosome biogenesis under conditions of oxygen deprivation. Int J Oncol 2022; 60:79. [PMID: 35543151 PMCID: PMC9097768 DOI: 10.3892/ijo.2022.5369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Abstract
Metabolic rewiring fuels rapid cancer cell proliferation by promoting adjustments in energetic resources, and increasing glucose uptake and its conversion into lactate, even in the presence of oxygen. Furthermore, solid tumors often contain hypoxic areas and can rapidly adapt to low oxygen conditions by activating hypoxia inducible factor (HIF)‑1α and several downstream pathways, thus sustaining cell survival and metabolic reprogramming. Since TNF receptor‑associated protein 1 (TRAP1) is a HSP90 molecular chaperone upregulated in several human malignancies and is involved in cancer cell adaptation to unfavorable environments and metabolic reprogramming, in the present study, its role was investigated in the adaptive response to hypoxia in human colorectal cancer (CRC) cells and organoids. In the present study, glucose uptake, lactate production and the expression of key metabolic genes were evaluated in TRAP1‑silenced CRC cell models under conditions of hypoxia/normoxia. Whole genome gene expression profiling was performed in TRAP1‑silenced HCT116 cells exposed to hypoxia to establish the role of TRAP1 in adaptive responses to oxygen deprivation. The results revealed that TRAP1 was involved in regulating hypoxia‑induced HIF‑1α stabilization and glycolytic metabolism and that glucose transporter 1 expression, glucose uptake and lactate production were partially impaired in TRAP1‑silenced CRC cells under hypoxic conditions. At the transcriptional level, the gene expression reprogramming of cancer cells driven by HIF‑1α was partially inhibited in TRAP1‑silenced CRC cells and organoids exposed to hypoxia. Moreover, Gene Set Enrichment Analysis of TRAP1‑silenced HCT116 cells exposed to hypoxia demonstrated that TRAP1 was involved in the regulation of ribosome biogenesis and this occurred with the inhibition of the mTOR pathway. Therefore, as demonstrated herein, TRAP1 is a key factor in maintaining HIF‑1α‑induced genetic/metabolic program under hypoxic conditions and may represent a promising target for novel metabolic therapies.
Collapse
Affiliation(s)
- Giuseppina Bruno
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, I-71122 Foggia, Italy
| | - Valeria Li Bergolis
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, I-71122 Foggia, Italy
| | - Annamaria Piscazzi
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, I-71122 Foggia, Italy
| | - Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, I-85028 Rionero in Vulture, Potenza, Italy
| | - Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, I-85028 Rionero in Vulture, Potenza, Italy
| | - Pietro Zoppoli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, I-85028 Rionero in Vulture, Potenza, Italy
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, I-85028 Rionero in Vulture, Potenza, Italy
| | - Michele Pietrafesa
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, I-85028 Rionero in Vulture, Potenza, Italy
| | - Guido Giordano
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, I-71122 Foggia, Italy
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80131 Naples, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80131 Naples, Italy
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, I-71122 Foggia, Italy
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, I-85028 Rionero in Vulture, Potenza, Italy
| |
Collapse
|
15
|
Shahcheraghi SH, Salemi F, Alam W, Ashworth H, Saso L, Khan H, Lotfi M. The Role of NRF2/KEAP1 Pathway in Glioblastoma: Pharmacological Implications. Med Oncol 2022; 39:91. [PMID: 35568790 DOI: 10.1007/s12032-022-01693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/21/2022] [Indexed: 11/29/2022]
Abstract
Glioblastoma multiforme (GBM) grade IV glioma is the most frequent and deadly intracranial cancer. This tumor is determined by unrestrained progression, uncontroled angiogenesis, high infiltration and weak response to treatment, which is chiefly because of abnormal signaling pathways in the tumor. A member related to the Cap 'n' collar family of keypart-leucine zipper transcription agents-the transcription factor NF-E2-related factor 2 (Nrf2)-regulates adaptive protection answers by organized upregulation of many genes that produce the cytoprotective factors. In reply to cellular pressures types such as stresses, Nrf2 escapes Kelch-like ECH-related protein 1 (Keap1)-facilitated suppression, moves from the cytoplasm towards the nucleus and performs upregulation of gene expression of antioxidant responsive element (ARE). Nrf2 function is related tocontrolling many types of diseases in the human specially GBM tumor.Thus, we will review the epigeneticalregulatory actions on the Nrf2/Keap1 signaling pathway and potential therapeutic options in GBM by aiming the stimulation of Nrf2.
Collapse
Affiliation(s)
- Seyed Hossein Shahcheraghi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Salemi
- School of Medicine, Islamic Azad University of Medical Sciences, Yazd, Iran
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | | | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, Rome, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan.
| | - Marzieh Lotfi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. .,Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
16
|
Marvi MV, Mongiorgi S, Ramazzotti G, Follo MY, Billi AM, Zoli M, Mazzatenta D, Morandi L, Asioli S, Papa V, McCubrey JA, Suh PG, Manzoli L, Cocco L, Ratti S. Role of PLCγ1 in the modulation of cell migration and cell invasion in glioblastoma. Adv Biol Regul 2022; 83:100838. [PMID: 34819252 DOI: 10.1016/j.jbior.2021.100838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Phosphoinositide-specific phospholipases C (PLCs) are a class of enzymes involved in several cell activities, such as cell cycle regulation, proliferation, differentiation and cytoskeletal dynamics. Among these enzymes, PLCγ1 is one of the most expressed PLCs in the brain, contributing to a complex network in the developing nervous system. Several studies have shown that PLCγ1 signaling imbalance is linked to several brain disorders, including glioblastoma, the most aggressive brain tumor in adults. Indeed, it has been demonstrated a link between PLCγ1 inhibition and the arrest of glioma cell motility of fetal rat brain aggregates and the impairment of cell invasion abilities following its down-regulation. This study aims to determine the pathological influence of PLCγ1 in glioblastoma, through a translational study which combines in silico data, data from glioblastoma patients' samples and data on engineered cell lines. We found out that PLCγ1 gene expression correlates with the pathological grade of gliomas, and it is higher in fifty patients' glioblastoma tissue samples compared to twenty healthy controls. Moreover, it was demonstrated that PLCγ1 silencing in U87-MG leads to a reduction in cell migration and invasion abilities. The opposite trend was observed following PLCγ1 overexpression, suggesting an interesting possible involvement of PLCγ1 in gliomas' aggressiveness.
Collapse
Affiliation(s)
- Maria Vittoria Marvi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Anna Maria Billi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Matteo Zoli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Diego Mazzatenta
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Luca Morandi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Anatomic Pathology Unit, Azienda USL di Bologna, Bologna, Italy
| | - Veronica Papa
- Department of Motor Sciences and Wellness (DiSMeB), Università Degli Studi di Napoli "Parthenope,", 80133, Napoli, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, 41062, South Korea; School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, South Korea
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.
| |
Collapse
|
17
|
Jhanwar-Uniyal M, Dominguez JF, Mohan AL, Tobias ME, Gandhi CD. Disentangling the signaling pathways of mTOR complexes, mTORC1 and mTORC2, as a therapeutic target in glioblastoma. Adv Biol Regul 2021; 83:100854. [PMID: 34996736 DOI: 10.1016/j.jbior.2021.100854] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022]
Abstract
Aberrant signaling of mechanistic target of rapamycin (mTOR' aka mammalian target of rapamycin) is shown to be linked to tumorigenesis of numerous malignancies including glioblastoma (GB). Glioblastoma mTOR is a serine threonine kinase that functions by forming two multiprotein complexes. There complexes are named mTORC1 and mTORC2 and downstream activated substrate execute cellular and metabolic functions. This signaling cascade of PI3K/AKT/mTOR is often upregulated due to frequent loss of the tumor suppressor PTEN, a phosphatase that functions antagonistically to PI3K. mTOR regulates cell growth, motility, and metabolism by forming two multiprotein complexes, mTORC1 and mTORC2, which are composed of special binding partners. These complexes are sensitive to distinct stimuli. mTORC1 is sensitive to nutrients and mTORC2 is regulated via PI3K and growth factor signaling. Since rapamycin and it's analogue are less effective in treatment of GB, we used novel ATP-competitive dual inhibitors of mTORC1 and mTORC2, namely, Torin1, Torin2, and XL388. Torin2 caused a concentration dependent pharmacodynamic effects on inhibition of phosphorylation of the mTORC1 substrates S6KSer235/236 and 4E-BP1Thr37/46 as well as the mTORC2 substrate AKTSer473 resulting in suppression of tumor cell proliferation and migration. Torin1 showed similar effects only at higher doses. Another small molecule compound, XL388 suppressed cell proliferation at a higher dose but failed to inhibit cell migration. Torin1 suppressed phosphorylation of PRAS40Thr246, however Torin2 completely abolished it. XL388 treatment inhibited the phosphorylation of PRAS40Thr246 at higher doses only. These findings underscore the use of novel compounds in treatment of cancer. In addition, formulation of third generation mTOR inhibitor "Rapalink-1" may provide new aspects to target mTOR pathways. Numerous inhibitors are currently being used in clinical trials that are aimed to target activated mTOR pathways.
Collapse
Affiliation(s)
- Meena Jhanwar-Uniyal
- Department of Neurosurgery, Westchester Medical Center, New York Medical College, Valhalla, NY, 10595, USA.
| | - Jose F Dominguez
- Department of Neurosurgery, Westchester Medical Center, New York Medical College, Valhalla, NY, 10595, USA
| | - Avinash L Mohan
- Department of Neurosurgery, Westchester Medical Center, New York Medical College, Valhalla, NY, 10595, USA
| | - Michael E Tobias
- Department of Neurosurgery, Westchester Medical Center, New York Medical College, Valhalla, NY, 10595, USA
| | - Chirag D Gandhi
- Department of Neurosurgery, Westchester Medical Center, New York Medical College, Valhalla, NY, 10595, USA
| |
Collapse
|