1
|
Rogers S, Charles A, Thomas RM. The Prospect of Harnessing the Microbiome to Improve Immunotherapeutic Response in Pancreatic Cancer. Cancers (Basel) 2023; 15:5708. [PMID: 38136254 PMCID: PMC10741649 DOI: 10.3390/cancers15245708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Pancreatic ductal adenocarcinoma cancer (PDAC) is projected to become the second leading cause of cancer-related death in the United States by 2030. Patients are often diagnosed with advanced disease, which explains the dismal 5-year median overall survival rate of ~12%. Immunotherapy has been successful in improving outcomes in the past decade for a variety of malignancies, including gastrointestinal cancers. However, PDAC is historically an immunologically "cold" tumor, one with an immunosuppressive environment and with restricted entry of immune cells that have limited the success of immunotherapy in these tumors. The microbiome, the intricate community of microorganisms present on and within humans, has been shown to contribute to many cancers, including PDAC. Recently, its role in tumor immunology and response to immunotherapy has generated much interest. Herein, the current state of the interaction of the microbiome and immunotherapy in PDAC is discussed with a focus on needed areas of study in order to harness the immune system to combat pancreatic cancer.
Collapse
Affiliation(s)
- Sherise Rogers
- Department of Medicine, Division of Hematology and Oncology, University of Florida College of Medicine, Gainesville, FL 32610, USA;
| | - Angel Charles
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA;
| | - Ryan M. Thomas
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA;
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32603, USA
| |
Collapse
|
2
|
Qian J, Zhang X, Wei B, Tang Z, Zhang B. The correlation between gut and intra-tumor microbiota and PDAC: Etiology, diagnostics and therapeutics. Biochim Biophys Acta Rev Cancer 2023; 1878:188943. [PMID: 37355177 DOI: 10.1016/j.bbcan.2023.188943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the lethal cancers in the world and its 5-year survival rate is <10%. Due to the unique TME and dense tissue structure, its curative efficacy is far from satisfactory,the immunotherapy is even more invalid. According to the recent studies, the gut and tumor microbiota have been proved to play a key role in the development, progression and prognosis of PDAC. Based on the differences of microbiome composition observed in PDAC patients and normal pancreas, many researches have been made focusing on the latent communication between gut and intra-tumor microbiota and PDAC. In this review, we will demonstrate the potential mechanism of the oncogenic effects of GM and IM and their crucial effects on modulating the TME. Besides, we focus on their interaction with chemotherapeutic and immunotherapeutic drugs and inducing the drug resistance, thus enlightening the promising role to be used to monitor the occurrence of PDAC, accurately modulate the immune environment to promote the therapeutic efficacy and predict the prognosis.
Collapse
Affiliation(s)
- Jiwei Qian
- The Fourth affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xin Zhang
- The Fourth affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Butian Wei
- The Fourth affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Zhe Tang
- The Fourth affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Bo Zhang
- The Second affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 31000, China.
| |
Collapse
|
3
|
Henderson EA, Lukomski S, Boone BA. Emerging applications of cancer bacteriotherapy towards treatment of pancreatic cancer. Front Oncol 2023; 13:1217095. [PMID: 37588093 PMCID: PMC10425600 DOI: 10.3389/fonc.2023.1217095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/26/2023] [Indexed: 08/18/2023] Open
Abstract
Pancreatic cancer is a highly aggressive form of cancer with a five-year survival rate of only ten percent. Pancreatic ductal adenocarcinoma (PDAC) accounts for ninety percent of those cases. PDAC is associated with a dense stroma that confers resistance to current treatment modalities. Increasing resistance to cancer treatments poses a challenge and a need for alternative therapies. Bacterial mediated cancer therapies were proposed in the late 1800s by Dr. William Coley when he injected osteosarcoma patients with live streptococci or a fabrication of heat-killed Streptococcus pyogenes and Serratia marcescens known as Coley's toxin. Since then, several bacteria have gained recognition for possible roles in potentiating treatment response, enhancing anti-tumor immunity, and alleviating adverse effects to standard treatment options. This review highlights key bacterial mechanisms and structures that promote anti-tumor immunity, challenges and risks associated with bacterial mediated cancer therapies, and applications and opportunities for use in PDAC management.
Collapse
Affiliation(s)
- Emily A. Henderson
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
- West Virginia Cancer Institute, West Virginia University, Morgantown, WV, United States
| | - Brian A. Boone
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
- West Virginia Cancer Institute, West Virginia University, Morgantown, WV, United States
- Department of Surgery, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
4
|
Malhotra P, Palanisamy R, Caparros-Martin JA, Falasca M. Bile Acids and Microbiota Interplay in Pancreatic Cancer. Cancers (Basel) 2023; 15:3573. [PMID: 37509236 PMCID: PMC10377396 DOI: 10.3390/cancers15143573] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Evidence suggests the involvement of the microbiota, including oral, intra-tumoral and gut, in pancreatic cancer progression and response to therapy. The gut microbiota modulates the bile acid pool and is associated with maintaining host physiology. Studies have shown that the bile acid/gut microbiota axis is dysregulated in pancreatic cancer. Bile acid receptor expression and bile acid levels are dysregulated in pancreatic cancer as well. Studies have also shown that bile acids can cause pancreatic cell injury and facilitate cancer cell proliferation. The microbiota and its metabolites, including bile acids, are also altered in other conditions considered risk factors for pancreatic cancer development and can alter responses to chemotherapeutic treatments, thus affecting patient outcomes. Altogether, these findings suggest that the gut microbial and/or bile acid profiles could also serve as biomarkers for pancreatic cancer detection. This review will discuss the current knowledge on the interaction between gut microbiota interaction and bile acid metabolism in pancreatic cancer.
Collapse
Affiliation(s)
- Pratibha Malhotra
- Metabolic Signalling Group, Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Ranjith Palanisamy
- Metabolic Signalling Group, Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | | | - Marco Falasca
- Metabolic Signalling Group, Curtin Health Innovation Research Institute, Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
5
|
Nista EC, Del Gaudio A, Del Vecchio LE, Mezza T, Pignataro G, Piccioni A, Gasbarrini A, Franceschi F, Candelli M. Pancreatic Cancer Resistance to Treatment: The Role of Microbiota. Biomedicines 2023; 11:157. [PMID: 36672664 PMCID: PMC9856157 DOI: 10.3390/biomedicines11010157] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Pancreatic cancer (PC) is an aggressive malignancy and the fourth leading cause of cancer death in the United States and Europe. It is estimated that PC will be the second leading cause of cancer death by 2030. In addition to late diagnosis, treatment resistance is a major cause of shortened survival in pancreatic cancer. In this context, there is growing evidence that microbes play a regulatory role, particularly in therapy resistance and in creating a microenvironment in the tumor, that favors cancer progression. The presence of certain bacteria belonging to the gamma-proteobacteria or mycoplasmas appears to be associated with both pharmacokinetic and pharmacodynamic changes. Recent evidence suggests that the microbiota may also play a role in resistance mechanisms to immunotherapy and radiotherapy. However, the interactions between microbiota and therapy are bilateral and modulate therapy tolerance. Future perspectives are increasingly focused on elucidating the role of the microbiota in tumorigenesis and processes of therapy resistance, and a better understanding of these mechanisms may provide important opportunities to improve survival in these patients.
Collapse
Affiliation(s)
- Enrico Celestino Nista
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Angelo Del Gaudio
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Livio Enrico Del Vecchio
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Teresa Mezza
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giulia Pignataro
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Piccioni
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Franceschi
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marcello Candelli
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|