1
|
Dong C, Zhang Y, Zeng J, Chong S, Liu Y, Bian Z, Fan S, Chen X. FUT2 promotes colorectal cancer metastasis by reprogramming fatty acid metabolism via YAP/TAZ signaling and SREBP-1. Commun Biol 2024; 7:1297. [PMID: 39390072 PMCID: PMC11467212 DOI: 10.1038/s42003-024-06993-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the second most lethal cancer worldwide because of its high rate of metastasis, and approximately 20% of CRC patients have metastases at initial diagnosis. Metabolic reprogramming, a hallmark of cancer cells, has been implicated in the process of metastasis. We previously demonstrated that fucosyltransferase 2 (FUT2) promotes the malignancy of CRC cells, however, the underlying mechanisms remain unclear. Here, bioinformatic analysis revealed that FUT2 is associated with the malignant phenotype and fatty acid metabolism in CRC. FUT2 knockdown decreased glucose uptake and de novo fatty acid synthesis, which in turn inhibited the proliferation and metastasis of CRC cells. Mechanistically, FUT2 promotes YAP1 nuclear translocation and stabilizes mSREBP-1 by fucosylation, thus promoting de novo fatty acid synthesis in CRC cells. In summary, this study demonstrates that FUT2 promotes the proliferation and metastasis of CRC cells by reprogramming fatty acid metabolism via YAP/TAZ signaling and SREBP-1, indicating that FUT2 might be a potential target for developing therapeutic strategies against CRC.
Collapse
Affiliation(s)
- Chenfei Dong
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yue Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiayue Zeng
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Suli Chong
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yang Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ziming Bian
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sairong Fan
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Xiaoming Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Peng N, Liu J, Hai S, Liu Y, Zhao H, Liu W. Role of Post-Translational Modifications in Colorectal Cancer Metastasis. Cancers (Basel) 2024; 16:652. [PMID: 38339403 PMCID: PMC10854713 DOI: 10.3390/cancers16030652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors of the digestive tract. CRC metastasis is a multi-step process with various factors involved, including genetic and epigenetic regulations, which turn out to be a serious threat to CRC patients. Post-translational modifications (PTMs) of proteins involve the addition of chemical groups, sugars, or proteins to specific residues, which fine-tunes a protein's stability, localization, or interactions to orchestrate complicated biological processes. An increasing number of recent studies suggest that dysregulation of PTMs, such as phosphorylation, ubiquitination, and glycosylation, play pivotal roles in the CRC metastasis cascade. Here, we summarized recent advances in the role of post-translational modifications in diverse aspects of CRC metastasis and its detailed molecular mechanisms. Moreover, advances in drugs targeting PTMs and their cooperation with other anti-cancer drugs, which might provide novel targets for CRC treatment and improve therapeutic efficacy, were also discussed.
Collapse
Affiliation(s)
- Na Peng
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; (N.P.); (S.H.); (Y.L.); (H.Z.)
| | - Jingwei Liu
- Department of Anus and Intestine Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China;
| | - Shuangshuang Hai
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; (N.P.); (S.H.); (Y.L.); (H.Z.)
| | - Yihong Liu
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; (N.P.); (S.H.); (Y.L.); (H.Z.)
| | - Haibo Zhao
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; (N.P.); (S.H.); (Y.L.); (H.Z.)
| | - Weixin Liu
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; (N.P.); (S.H.); (Y.L.); (H.Z.)
| |
Collapse
|
3
|
Chuang TD, Ton N, Rysling S, Quintanilla D, Boos D, Gao J, McSwiggin H, Yan W, Khorram O. The Influence of Race/Ethnicity on the Transcriptomic Landscape of Uterine Fibroids. Int J Mol Sci 2023; 24:13441. [PMID: 37686244 PMCID: PMC10487975 DOI: 10.3390/ijms241713441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The objective of this study was to determine if the aberrant expression of select genes could form the basis for the racial disparity in fibroid characteristics. The next-generation RNA sequencing results were analyzed as fold change [leiomyomas/paired myometrium, also known as differential expression (DF)], comparing specimens from White (n = 7) and Black (n = 12) patients. The analysis indicated that 95 genes were minimally changed in tumors from White (DF ≈ 1) but were significantly altered by more than 1.5-fold (up or down) in Black patients. Twenty-one novel genes were selected for confirmation in 69 paired fibroids by qRT-PCR. Among these 21, coding of transcripts for the differential expression of FRAT2, SOX4, TNFRSF19, ACP7, GRIP1, IRS4, PLEKHG4B, PGR, COL24A1, KRT17, MMP17, SLN, CCDC177, FUT2, MYO5B, MYOG, ZNF703, CDC25A, and CDCA7 was significantly higher, while the expression of DAB2 and CAV2 was significantly lower in tumors from Black or Hispanic patients compared with tumors from White patients. Western blot analysis revealed a greater differential expression of PGR-A and total progesterone (PGR-A and PGR-B) in tumors from Black compared with tumors from White patients. Collectively, we identified a set of genes uniquely expressed in a race/ethnicity-dependent manner, which could form the underlying mechanisms for the racial disparity in fibroids and their associated symptoms.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.Q.); (D.B.); (J.G.); (H.M.); (W.Y.)
| | - Nhu Ton
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.Q.); (D.B.); (J.G.); (H.M.); (W.Y.)
| | - Shawn Rysling
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.Q.); (D.B.); (J.G.); (H.M.); (W.Y.)
| | - Derek Quintanilla
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.Q.); (D.B.); (J.G.); (H.M.); (W.Y.)
| | - Drake Boos
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.Q.); (D.B.); (J.G.); (H.M.); (W.Y.)
| | - Jianjun Gao
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.Q.); (D.B.); (J.G.); (H.M.); (W.Y.)
| | - Hayden McSwiggin
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.Q.); (D.B.); (J.G.); (H.M.); (W.Y.)
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.Q.); (D.B.); (J.G.); (H.M.); (W.Y.)
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Omid Khorram
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.Q.); (D.B.); (J.G.); (H.M.); (W.Y.)
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at the University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Li H, Ren X, Pang X, Yang P, Lu Y, Guan F, Wang Y, Li X. LacNAc modification in bone marrow stromal cells enhances resistance of myelodysplastic syndrome cells to chemotherapeutic drugs. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119492. [PMID: 37207914 DOI: 10.1016/j.bbamcr.2023.119492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023]
Abstract
Chemotherapeutic drugs are used routinely for treatment for myelodysplastic syndrome (MDS) patients but are ineffective in a substantial proportion of patients. Abnormal hematopoietic microenvironments, in addition to spontaneous characteristics of malignant clones, contribute to ineffective hematopoiesis. In our study, we found expression of enzyme β1,4-galactosyltransferase 1 (β4GalT1), which regulates N-acetyllactosamine (LacNAc) modification of proteins, is elevated in bone marrow stromal cells (BMSCs) of MDS patients, and also contributes to drug ineffectiveness through a protective effect on malignant cells. Our investigation of the underlying molecular mechanism revealed that β4GalT1-overexpressing BMSCs promoted MDS clone cells resistant to chemotherapeutic drugs and also showed enhanced secretion of cytokine CXCL1 through degradation of tumor protein p53. Chemotherapeutic drug tolerance of myeloid cells was inhibited by application of exogenous LacNAc disaccharide and blocking of CXCL1. Our findings clarify the functional role of β4GalT1-catalyzed LacNAc modification in BMSCs of MDS. Clinical alteration of this process is a potential new strategy that may substantially enhance effectiveness of therapies for MDS and other malignancies, by targeting a niche interaction.
Collapse
Affiliation(s)
- Hongjiao Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Xiaoyue Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Xingchen Pang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Pengyu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yurong Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yi Wang
- Department of Hematology, Provincial People's Hospital, Xi'an, Shaanxi, China.
| | - Xiang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China; Institute of Hematology, School of Medicine, Northwest University, Xi'an, Shaanxi, China.
| |
Collapse
|