1
|
Ruden DM. GC Content in Nuclear-Encoded Genes and Effective Number of Codons (ENC) Are Positively Correlated in AT-Rich Species and Negatively Correlated in GC-Rich Species. Genes (Basel) 2025; 16:432. [PMID: 40282392 PMCID: PMC12026676 DOI: 10.3390/genes16040432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Codon usage bias affects gene expression and translation efficiency across species. The effective number of codons (ENC) and GC content influence codon preference, often displaying unimodal or bimodal distributions. This study investigates the correlation between ENC and GC rankings across species and how their relationship affects codon usage distributions. METHODS I analyzed nuclear-encoded genes from 17 species representing six kingdoms: one bacteria (Escherichia coli), three fungi (Saccharomyces cerevisiae, Neurospora crassa, and Schizosaccharomyces pombe), one archaea (Methanococcus aeolicus), three protists (Rickettsia hoogstraalii, Dictyostelium discoideum, and Plasmodium falciparum),), three plants (Musa acuminata, Oryza sativa, and Arabidopsis thaliana), and six animals (Anopheles gambiae, Apis mellifera, Polistes canadensis, Mus musculus, Homo sapiens, and Takifugu rubripes). Genes in all 17 species were ranked by GC content and ENC, and correlations were assessed. I examined how adding or subtracting these rankings influenced their overall distribution in a new method that I call Two-Rank Order Normalization or TRON. The equation, TRON = SUM(ABS((GC rank1:GC rankN) - (ENC rank1:ENC rankN))/(N2/3), where (GC rank1:GC rankN) is a rank-order series of GC rank, (ENC rank1:ENC rankN) is a rank-order series ENC rank, sorted by the rank-order series GC rank. The denominator of TRON, N2/3, is the normalization factor because it is the expected value of the sum of the absolute value of GC rank-ENC rank for all genes if GC rank and ENC rank are not correlated. RESULTS ENC and GC rankings are positively correlated (i.e., ENC increases as GC increases) in AT-rich species such as honeybees (R2 = 0.60, slope = 0.78) and wasps (R2 = 0.52, slope = 0.72) and negatively correlated (i.e., ENC decreases as GC increases) in GC-rich species such as humans (R2 = 0.38, slope = -0.61) and rice (R2 = 0.59, slope = -0.77). Second, the GC rank-ENC rank distributions change from unimodal to bimodal as GC content increases in the 17 species. Third, the GC rank+ENC rank distributions change from bimodal to unimodal as GC content increases in the 17 species. Fourth, the slopes of the correlations (GC versus ENC) in all 17 species are negatively correlated with TRON (R2 = 0.98) (see Graphic Abstract). CONCLUSIONS The correlation between ENC rank and GC rank differs among species, shaping codon usage distributions in opposite ways depending on whether a species' nuclear-encoded genes are AT-rich or GC-rich. Understanding these patterns might provide insights into translation efficiency, epigenetics mediated by CpG DNA methylation, epitranscriptomics of RNA modifications, RNA secondary structures, evolutionary pressures, and potential applications in genetic engineering and biotechnology.
Collapse
Affiliation(s)
- Douglas M Ruden
- C. S. Mott Center for Human Growth and Development, Institute for Environmental Health Sciences, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
2
|
Xie X, Fang Z, Zhang H, Wang Z, Li J, Jia Y, Shang L, Cao F, Li F. The role of N(6)-methyladenosine (m6a) modification in cancer: recent advances and future directions. EXCLI JOURNAL 2025; 24:113-150. [PMID: 39967906 PMCID: PMC11830918 DOI: 10.17179/excli2024-7935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/18/2024] [Indexed: 02/20/2025]
Abstract
N(6)-methyladenosine (m6A) modification is the most abundant and prevalent internal modification in eukaryotic mRNAs. The role of m6A modification in cancer has become a hot research topic in recent years and has been widely explored. m6A modifications have been shown to regulate cancer occurrence and progression by modulating different target molecules. This paper reviews the recent research progress of m6A modifications in cancer and provides an outlook on future research directions, especially the development of molecularly targeted drugs. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Xiaozhou Xie
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhen Fang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haoyu Zhang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zheng Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchen Jia
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Sun X, Zhang Y, Wang H, Pu X, Yuan X, Liang Y, Liu H, Wang X, Lu H. N 6-methyladenosine modification of RIMS binding protein 2 promotes head and neck squamous cell carcinoma proliferation and radiotherapy tolerance through endoplasmic reticulum stress. Cancer Gene Ther 2025; 32:122-135. [PMID: 39653741 DOI: 10.1038/s41417-024-00863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/29/2025]
Abstract
Insulin-like growth factor binding protein 2 (IGF2BP2) fulfills a key role in the development of head and neck squamous cell carcinoma (HNSCC). Radiotherapy is an effective method to treat HNSCC; however, radiation resistance is the main reason for treatment failure. At present, the carcinogenic role of IGF2BP2 in terms of the proliferation of HNSCC and the radioresistance of its therapy remain poorly understood. In the present study, patients with HNSCC with higher IGF2BP2 expression levels were associated with shorter survival times. IGF2BP2 is significantly upregulated in HNSCC cells compared with irradiated cell. Based on functional studies, IGF2BP2 was found to promote HNSCC cell proliferation and tolerance to radiotherapy both in vitro and in vivo. In terms of the underlying mechanism, RIMS binding protein 2 (RIMBP2) was found to be highly expressed in HNSCC and to promote the proliferation of HNSCC and radiotherapy resistance. RIMBP2 was shown to be a direct target of IGF2BP2, activating endoplasmic reticulum stress in HNSCC. In addition, it has been demonstrated that IGF2BP2, as m6A reader, is able to promote RIMBP2 stability via binding to m6A sites in the RIMBP2-coding sequence region. Therefore, the present study has unveiled a potential mechanism via which IGF2BP2 promotes HNSCC development and radiotherapy resistance; moreover, from a therapeutic perspective, IGF2BP2 may serve as a potential therapeutic target and a valuable prognostic biomarker for patients with HNSCC who have developed tolerance towards radiotherapy.
Collapse
Affiliation(s)
- Xinyu Sun
- Department of Otorhinolaryngology, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, Jiangsu Province, China
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, Jiangsu Province, China
| | - Yanshu Zhang
- Department of Otorhinolaryngology, Yancheng Clinical Medical College of Jiangsu University/The First people's Hospital of Yancheng, 224001, Yancheng, Jiangsu Province, China
| | - Huirong Wang
- Department of Otorhinolaryngology, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, Jiangsu Province, China
| | - Xi Pu
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, Jiangsu Province, China
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, Jiangsu Province, China
| | - Xiao Yuan
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, Jiangsu Province, China
| | - Yuntong Liang
- Department of Otorhinolaryngology, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, Jiangsu Province, China
| | - Hao Liu
- Department of Otorhinolaryngology, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, Jiangsu Province, China
| | - Xu Wang
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, Jiangsu Province, China
| | - Hanqiang Lu
- Department of Otorhinolaryngology, Affiliated Hospital of Jiangsu University, 212000, Zhenjiang, Jiangsu Province, China.
| |
Collapse
|
4
|
蓝 苑, 袁 艳, 文 浩. [Research progress on the role and mechanism of IGF2BPs family in head and neck squamous carcinoma]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY HEAD AND NECK SURGERY 2024; 38:1195-1202. [PMID: 39605275 PMCID: PMC12060109 DOI: 10.13201/j.issn.2096-7993.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Indexed: 11/29/2024]
Abstract
Objective:Head and neck squamous cell carcinoma(HNSCC) is one of the common malignant tumours, and most of them are in locally advanced stages at the time of diagnosis due to the lack of early symptoms, and the prognosis of such patients is still poor. M6A modification is the most common form of RNA modification in eukaryotic organisms, with a wide range of biological functions, and the family of IGF2BPs modulates growth, metastasis, chemotherapy resistance, and other processes of cancer by binding to and stabilizing a wide range of target RNAs through recognition of the m6A locus. The aim of this paper is to review the role and related mechanisms of IGF2BPs in head and neck squamous carcinoma, and to provide new ideas for early diagnosis and precision treatment of HNSCC.
Collapse
Affiliation(s)
- 苑钊 蓝
- 郴州市第一人民医院耳鼻咽喉头颈外科(湖南郴州,423000)Department of Otolaryngology-Head and Neck Surgery, Chenzhou No. 1 People's Hospital, Chenzhou, 423000, China
| | - 艳艳 袁
- 郴州市第一人民医院耳鼻咽喉头颈外科(湖南郴州,423000)Department of Otolaryngology-Head and Neck Surgery, Chenzhou No. 1 People's Hospital, Chenzhou, 423000, China
| | - 浩杰 文
- 郴州市第一人民医院耳鼻咽喉头颈外科(湖南郴州,423000)Department of Otolaryngology-Head and Neck Surgery, Chenzhou No. 1 People's Hospital, Chenzhou, 423000, China
| |
Collapse
|
5
|
Janakiraman P, Jayaprakash JP, Muralidharan SV, Narayan KP, Khandelia P. N6-methyladenosine RNA modification in head and neck squamous cell carcinoma (HNSCC): current status and future insights. Med Oncol 2024; 42:12. [PMID: 39580759 DOI: 10.1007/s12032-024-02566-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
N6-methyladenosine (m6A) plays a pivotal role in regulating epitranscriptomic mechanisms and is closely linked to the normal functioning of diverse classes of RNAs, both coding as well as noncoding. Recent research highlights the role of m6A RNA methylation in the onset and progression of several cancers, including head and neck squamous cell carcinoma (HNSCC). HNSCC ranks as the seventh most common cancer globally, with a five-year patient survival rate of just 50%. Elevated m6A RNA methylation levels and deregulated expression of various m6A modifiers, i.e. writers, readers, and erasers, have been reported across nearly all HNSCC subtypes. Numerous studies have demonstrated that m6A modifications significantly impact key hallmarks of HNSCC, such as proliferation, apoptosis, migration, and invasion. Furthermore, m6A impacts epithelial-mesenchymal transition (EMT), drug resistance, and aerobic glycolysis, and disrupts the tumor microenvironment. Additionally, transcripts regulated by m6A in HNSCC present themselves as potential diagnostic and prognostic biomarkers. This review attempts to comprehensively summarize the role of m6A RNA methylation and its modifiers in regulating various facets of HNSCC pathogenesis.
Collapse
Affiliation(s)
- Pramodha Janakiraman
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Hyderabad, Telangana, 500078, India
| | - Jayasree Peroth Jayaprakash
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Hyderabad, Telangana, 500078, India
| | - Sridhanya Velayudham Muralidharan
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Hyderabad, Telangana, 500078, India
| | - Kumar Pranav Narayan
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Hyderabad, Telangana, 500078, India
| | - Piyush Khandelia
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani - Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal-Malkajgiri District, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
6
|
Liu S, Han B, Wang R, Fang J. Elucidating the role of FOS in modulating the immune microenvironment through fibroblast and myeloid cell regulation in locoregional recurrent HNSCC. ENVIRONMENTAL TOXICOLOGY 2024; 39:4531-4546. [PMID: 38567514 DOI: 10.1002/tox.24262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/10/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) presents a significant clinical challenge, particularly due to its high propensity for locoregional recurrence. Current research underscores the need to unravel the complex interactions within the tumor microenvironment. This study addresses the critical gap in understanding how FOS modulates the immune landscape in HNSCC, with a focus on its influence on fibroblast and myeloid cell dynamics. METHODS Employing a comprehensive approach, we analyzed tissue samples from HNSCC patients and adjacent non-cancerous tissues using bulk RNA sequencing complemented by in-depth bioinformatics analyses, including gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, and immune infiltration assessment. A pivotal aspect of our research involved dissecting single-cell RNA-seq data from GSE234933 to elucidate the cell-type-specific expression of FOS. RESULTS We found that FOS expression varies significantly in different cell populations in the HNSCC tumor microenvironment, especially in fibroblasts and myeloid cells. This expression difference may reflect the different roles of these cells in tumor progression and their impact on the tumor microenvironment. CONCLUSION Our results uncover a significant correlation between FOS expression and key immune and hypoxia-related pathways, suggesting its integral role in the tumor microenvironment. These findings not only enhance our understanding of HNSCC pathogenesis but also highlight FOS as a potential therapeutic target. This study marks a significant step towards addressing the urgent need for targeted interventions in HNSCC, particularly in the context of locoregional recurrence.
Collapse
Affiliation(s)
- Shaokun Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Boxuan Han
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ru Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|