1
|
Tan M, Lin X, Chen H, Ye W, Yi J, Li C, Liu J, Su J. Sterol regulatory element binding transcription factor 1 promotes proliferation and migration in head and neck squamous cell carcinoma. PeerJ 2023; 11:e15203. [PMID: 37090107 PMCID: PMC10117388 DOI: 10.7717/peerj.15203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/17/2023] [Indexed: 04/25/2023] Open
Abstract
Background Sterol-regulatory element-binding protein 1 (SREBP1) is a transcription factor involved in lipid metabolism that is encoded by sterol regulatory element binding transcription factor 1(SREBF1). SREBP1 overexpression is associated with the progression of several human tumors; however, the role of SREBP1 in head and neck squamous cell carcinoma (HNSC) remains unclear. Methods SREBF1 expression in pan-cancer was analyzed using the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) data, and the association between SREBF1 expression and clinical characteristics of HNSC patients was examined using the UALCAN database. Enrichment analysis of SREBF1-related genes was performed using the Cluster Profiler R package. TCGA database was used to investigate the relationship between immune cell infiltration and SREBF1 expression. CCK-8, flow cytometry, and wound healing assays were performed to investigate the effect of SREBF1 knockdown on the proliferation and migration of HNSC cells. Results SREBF1 was significantly upregulated in several tumor tissues, including HNSC, and SREBF1 overexpression was positively correlated with sample type, cancer stage, tumor grade, and lymph node stage in HNSC patients. Gene enrichment analysis revealed that SREBF1 is associated with DNA replication and homologous recombination. SREBF1 upregulation was positively correlated with the infiltration of cytotoxic cells, B cells, T cells, T helper cells, and NK CD56 bright cells in HNSC. Knockdown of SREBF1 inhibited the proliferation and migration of HNSC cells (Hep2 and TU212) and induced apoptosis by downregulating the expression of steroidogenic acute regulatory protein-related lipid transfer 4 (STARD4). Conclusions SREBF1 may promote HNSC proliferation, migration and inhibit apoptosis by upregulating STARD4 and affecting the level of immune cell infiltration.
Collapse
|
2
|
Multi-Omic Approaches to Breast Cancer Metabolic Phenotyping: Applications in Diagnosis, Prognosis, and the Development of Novel Treatments. Cancers (Basel) 2021; 13:cancers13184544. [PMID: 34572770 PMCID: PMC8470181 DOI: 10.3390/cancers13184544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) is characterized by high disease heterogeneity and represents the most frequently diagnosed cancer among women worldwide. Complex and subtype-specific gene expression alterations participate in disease development and progression, with BC cells known to rewire their cellular metabolism to survive, proliferate, and invade. Hence, as an emerging cancer hallmark, metabolic reprogramming holds great promise for cancer diagnosis, prognosis, and treatment. Multi-omics approaches (the combined analysis of various types of omics data) offer opportunities to advance our understanding of the molecular changes underlying metabolic rewiring in complex diseases such as BC. Recent studies focusing on the combined analysis of genomics, epigenomics, transcriptomics, proteomics, and/or metabolomics in different BC subtypes have provided novel insights into the specificities of metabolic rewiring and the vulnerabilities that may guide therapeutic development and improve patient outcomes. This review summarizes the findings of multi-omics studies focused on the characterization of the specific metabolic phenotypes of BC and discusses how they may improve clinical BC diagnosis, subtyping, and treatment.
Collapse
|
3
|
Presler M, Wojtczyk-Miaskowska A, Schlichtholz B, Kaluzny A, Matuszewski M, Mika A, Sledzinski T, Swierczynski J. Increased expression of the gene encoding stearoyl-CoA desaturase 1 in human bladder cancer. Mol Cell Biochem 2018; 447:217-224. [PMID: 29396722 PMCID: PMC6133071 DOI: 10.1007/s11010-018-3306-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/25/2018] [Indexed: 01/01/2023]
Abstract
Bladder cancer is a common disease and a significant cause of death worldwide. There is thus great interest in identifying a diagnostic and prognostic biomarker, as well as gaining an understanding of the molecular basis of bladder cancer. Stearoyl-CoA desaturase 1 gene (SCD1) is highly overexpressed in many human cancers. However, the expression of SCD1 has not yet been investigated in patients with bladder cancer. Here, we document that (a) the SCD1 is highly overexpressed in human bladder cancer; (b) high expression of SCD1 is more frequently observed in the late stage of disease and patients with lymph node metastasis; (c) bladder cancer patients with a higher SCD1 mRNA level have a poorer survival rate than those with normal SCD1 expression. Overall, this is the first report to indicate an association between SCD1 mRNA level and clinical indicators of human bladder cancer. Our study has provided evidence supporting the potential role of SCD1 as a biomarker for human bladder cancer prognosis.
Collapse
Affiliation(s)
- M Presler
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland
| | - A Wojtczyk-Miaskowska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland
| | - B Schlichtholz
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland
| | - A Kaluzny
- Department of Urology, Medical University of Gdansk, Smoluchowskiego 17, 80-214, Gdansk, Poland
| | - M Matuszewski
- Department of Urology, Medical University of Gdansk, Smoluchowskiego 17, 80-214, Gdansk, Poland
| | - A Mika
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland.,Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - T Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland
| | - J Swierczynski
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland. .,State School of Higher Vocational Education in Koszalin, Lesna 1, 75-582, Koszalin, Poland.
| |
Collapse
|
4
|
Tian Q, Xiao Y, Wu Y, Liu Y, Song Z, Gao W, Zhang J, Yang J, Zhang Y, Guo T, Dai F, Sun Z. MicroRNA-33b suppresses the proliferation and metastasis of hepatocellular carcinoma cells through the inhibition of Sal-like protein 4 expression. Int J Mol Med 2016; 38:1587-1595. [PMID: 28026002 DOI: 10.3892/ijmm.2016.2754] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 09/16/2016] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) have been found to participate in the development and malignant progression of human cancers by negatively mediating the expression of their target genes. Recently, miR‑33b has been reported to be involved in multiple types of human cancer, including hepatocellular carcinoma (HCC). However, the underlying regulatory mechanisms of miR‑33b in HCC cell growth and metastasis remain largely unclear. In the present study, RT-qPCR revealed that miR‑33b was significantly downregulated in HCC tissues compared to their matched adjacent normal tissues. Moreover, the miR‑33b level was significantly lower in advanced-stage HCC (stages T3-T4) compared to early-stage HCC (stages T1-T2). Furthermore, it was also downregulated in the HCC cell lines, LH86, HepG2, LMH and PLHC-1, when compared with the THLE-3 normal human liver cells. We further demonstrated that the overexpression of miR‑33b led to a significant decrease in the proliferation, migration and invasion of HepG2 and LH86 cells. Luciferase reporter assay identified Sal-like protein 4 (SALL4) as a target gene of miR‑33b, and its protein expression was negatively regulated by miR‑33b in HepG2 and LH86 cells. Moreover, the restoration of SALL4 expression markedly reversed the inhibitory effect of miR‑33b overexpression on the proliferation, migration and invasion of HepG2 and LH86 cells, indicating that SALL4 is involved in miR‑33b-mediated malignant phenotypes of HCC cells. Furthermore, we found that SALL4 was significantly upregulated in HCC tissues compared to their matched adjacent normal tissues, and its increased expression was significantly associated with the advanced malignancy of HCC. Moreover, SALL4 was also upregulated in HCC cell lines compared to the THLE-3 normal human liver cells. Finally, we found that the SALL4 expression inversely correlated with the miR‑33b level in HCC tissues. On the whole, the findings of our study demonstrate that miR‑33b suppresses the proliferation and metastasis of HCC cells through the inhibition of SALL4 expression. Therefore, miR‑33b/SALL4 may become a potential therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Qinggang Tian
- Department of General Surgery, The 4th Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia 014040, P.R. China
| | - Yao Xiao
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yanting Wu
- Department of General Surgery, The Third Clinical Medical School of Inner Mongolia Medical University (Baogang Hospital of Inner Mongolia), Baotou, Inner Mongolia 014010, P.R. China
| | - Yun Liu
- Department of General Surgery, The 4th Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia 014040, P.R. China
| | - Zhiqing Song
- Department of General Surgery, The 4th Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia 014040, P.R. China
| | - Wenfeng Gao
- Department of General Surgery, The 4th Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia 014040, P.R. China
| | - Jing Zhang
- Department of General Surgery, The 4th Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia 014040, P.R. China
| | - Jingling Yang
- Department of General Surgery, The 4th Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia 014040, P.R. China
| | - Yuguo Zhang
- Department of General Surgery, The 4th Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia 014040, P.R. China
| | - Tuankui Guo
- Department of General Surgery, The 4th Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia 014040, P.R. China
| | - Furong Dai
- Department of General Surgery, The 4th Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia 014040, P.R. China
| | - Zhigang Sun
- Department of Neurosurgery, Baotou Eighth Hospital, Baotou, Inner Mongolia 014040, P.R. China
| |
Collapse
|
5
|
Bao J, Zhu L, Zhu Q, Su J, Liu M, Huang W. SREBP-1 is an independent prognostic marker and promotes invasion and migration in breast cancer. Oncol Lett 2016; 12:2409-2416. [PMID: 27703522 PMCID: PMC5038874 DOI: 10.3892/ol.2016.4988] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/29/2016] [Indexed: 12/21/2022] Open
Abstract
Re-programming of lipogenic signaling has been previously demonstrated to result in significant alterations in tumor cell pathology. Sterol regulatory element-binding protein 1 (SREBP-1) is a known transcription factor of lipogenic genes. Despite the fact that its functions in proliferation and apoptosis have been elucidated in recent studies, its role in tumor cell migration and invasion, particularly in breast cancer, remains unclear. In present study, the messenger RNA and protein expression levels of SREBP-1 in cancer tissues were observed to be overexpressed compared with those in matched para-cancerous tissues (P<0.01). SREBP-1 level was highly positively correlated with tumor differentiation (P<0.001), tumor-node-metastasis stage (P=0.044) and lymph node metastasis (P<0.001). High expression of SREBP-1 predicted poor prognosis in patients with breast cancer. Additionally, multivariate analysis revealed that SREBP-1 was an independent factor of 5-year overall and disease-specific survival in breast cancer patients (P<0.01). In vitro studies revealed that the suppression of SREBP-1 expression in both MDA-MB-231 and MCF7 cells significantly inhibited cell migration and invasion (P<0.01). The present data indicate that SREBP-1 plays a critical role in breast cancer migration and invasion, and may serve as a prognostic marker of this malignancy.
Collapse
Affiliation(s)
- Jisheng Bao
- Department of Geriatrics, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Liping Zhu
- Department of Internal Medicine, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Qi Zhu
- Department of Internal Medicine, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Jianhua Su
- Department of Geriatrics, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Menglan Liu
- Department of Geriatrics, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Wei Huang
- Department of Geriatrics, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| |
Collapse
|
6
|
Noferesti SS, Sohel MMH, Hoelker M, Salilew-Wondim D, Tholen E, Looft C, Rings F, Neuhoff C, Schellander K, Tesfaye D. Controlled ovarian hyperstimulation induced changes in the expression of circulatory miRNA in bovine follicular fluid and blood plasma. J Ovarian Res 2015; 8:81. [PMID: 26645573 PMCID: PMC4673782 DOI: 10.1186/s13048-015-0208-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/24/2015] [Indexed: 12/12/2022] Open
Abstract
Background Despite its role in increasing the number of offspring during the lifetime of an individual animal, controlled ovarian hyperstimulation (COH) may have detrimental effects on oocyte development, embryo quality and endometrial receptivity. Circulating miRNAs in bio-fluids have been shown to be associated with various pathological conditions including cancers. Here we aimed to investigate the effect of COH on the level of extracellular miRNAs in bovine follicular fluid and blood plasma and elucidate their mode of circulation and potential molecular mechanisms to be affected in the reproductive tract. Method Twelve simmental heifers were estrous synchronized and six of them were hyperstimulated using FSH. Follicular fluid samples from experimental animals were collected using ovum pick up technique at day 0 of the estrous cycle and blood samples were collected at day 0, 3 and 7 of post ovulation. The expression profile of circulatory miRNAs in follicular fluid and blood plasma were performed using the human miRCURY LNA™ Universal RT miRNA PCR array system. A comparative threshold cycle method was used to determine the relative abundance of the miRNAs. Results A total of 504 and 402 miRNAs were detected in both bovine follicular fluid and blood plasma, respectively. Of these 57 and 21 miRNAs were found to be differentially expressed in follicular fluid and blood plasma, respectively derived from hyperstimulated versus unstimulated heifers. Bioinformatics analysis of those circulating miRNAs indicated that their potential target genes are involved in several pathways including TGF-beta signaling pathway, MAPK signaling pathway, pathways in cancer and Oocyte meiosis. Moreover, detail analysis of the mode of circulation of some candidates showed that most of the miRNA were found to be detected in both exosomal and Ago2 protein complex fraction of both follicular fluid and blood plasma. Conclusion Our data provide the consequence of hyperstimulation induced changes of extracellular miRNAs in bovine follicular fluid and blood plasma, which may have a potential role in regulating genes associated not only with bovine ovarian function but also involved in altering various physiological in bovine oocytes, embryos and modulating reproductive tract environment.
Collapse
Affiliation(s)
- Sina Seifi Noferesti
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, 53115, Germany
| | - Md Mahmodul Hasan Sohel
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, 53115, Germany.,Department of Animal Science, Faculty of Agriculture, Erciyes University, Kayseri, 38039, Turkey
| | - Michael Hoelker
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, 53115, Germany
| | - Dessie Salilew-Wondim
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, 53115, Germany
| | - Ernst Tholen
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, 53115, Germany
| | - Christian Looft
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, 53115, Germany
| | - Franca Rings
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, 53115, Germany
| | - Christiane Neuhoff
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, 53115, Germany
| | - Karl Schellander
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, 53115, Germany
| | - Dawit Tesfaye
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, 53115, Germany.
| |
Collapse
|
7
|
Liao W, Gu C, Huang A, Yao J, Sun R. MicroRNA-33b inhibits tumor cell growth and is associated with prognosis in colorectal cancer patients. Clin Transl Oncol 2015; 18:449-56. [DOI: 10.1007/s12094-015-1388-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 08/17/2015] [Indexed: 01/20/2023]
|
8
|
SREBP-1 has a prognostic role and contributes to invasion and metastasis in human hepatocellular carcinoma. Int J Mol Sci 2014; 15:7124-38. [PMID: 24776759 PMCID: PMC4057663 DOI: 10.3390/ijms15057124] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 03/16/2014] [Accepted: 04/10/2014] [Indexed: 01/18/2023] Open
Abstract
Sterol regulatory element-binding protein 1 (SREBP-1) is a well-known nuclear transcription factor involved in lipid synthesis. Recent studies have focused on its functions in tumor cell proliferation and apoptosis, but its role in cell migration and invasion, especially in hepatocellular carcinoma (HCC), is still unclear. In this study, we found that the expression of SREBP-1 in HCC tissues was significantly higher than those in matched tumor-adjacent tissues (p < 0.05). SREBP-1 was expressed at significantly higher levels in patients with large tumor size, high histological grade and advanced tumor-node-metastasis (TNM) stage (p < 0.05). The positive expression of SREBP-1 correlated with a worse 3-year overall and disease-free survival of HCC patients (p < 0.05). Additionally, SREBP-1 was an independent factor for predicting both 3-year overall and disease-free survival of HCC patients (p < 0.05). In vitro studies revealed that downregulation of SREBP-1 inhibited cell proliferation and induced apoptosis in both HepG2 and MHCC97L cells (p < 0.05). Furthermore, wound healing and transwell assays showed that SREBP-1 knockdown prominently inhibited cell migration and invasion in both HepG2 and MHCC97L cells (p < 0.05). These results suggest that SREBP-1 may serve as a prognostic marker in HCC and may promote tumor progression by promoting cell growth and metastasis.
Collapse
|