1
|
Epigenetic Abnormalities in Chondrosarcoma. Int J Mol Sci 2023; 24:ijms24054539. [PMID: 36901967 PMCID: PMC10003547 DOI: 10.3390/ijms24054539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
In recent years, our understanding of the epigenetic mechanisms involved in tumor pathology has improved greatly. DNA and histone modifications, such as methylation, demethylation, acetylation, and deacetylation, can lead to the up-regulation of oncogenic genes, as well as the suppression of tumor suppressor genes. Gene expression can also be modified on a post-transcriptional level by microRNAs that contribute to carcinogenesis. The role of these modifications has been already described in many tumors, e.g., colorectal, breast, and prostate cancers. These mechanisms have also begun to be investigated in less common tumors, such as sarcomas. Chondrosarcoma (CS) is a rare type of tumor that belongs to sarcomas and is the second most common malignant bone tumor after osteosarcoma. Due to unknown pathogenesis and resistance to chemo- and radiotherapies of these tumors, there is a need to develop new potential therapies against CS. In this review, we summarize current knowledge on the influence of epigenetic alterations in the pathogenesis of CS by discussing potential candidates for future therapies. We also emphasize ongoing clinical trials that use drugs targeting epigenetic modifications in CS treatment.
Collapse
|
2
|
Proline Rich Peptides of Neurohypophysial Origin: Related Peptides and Possible Functions. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10194-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Gayathri L, Akbarsha MA, Ruckmani K. In vitro study on aspects of molecular mechanisms underlying invasive aspergillosis caused by gliotoxin and fumagillin, alone and in combination. Sci Rep 2020; 10:14473. [PMID: 32879392 PMCID: PMC7467938 DOI: 10.1038/s41598-020-71367-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
Gliotoxin (GT) and fumagillin (FUM) are mycotoxins most abundantly produced by Aspergillus fumigatus during the early stages of infection to cause invasive aspergillosis (IA). Therefore, we hypothesized that GT and FUM could be the possible source of virulence factors, which we put to test adopting in vitro monoculture and the novel integrated multiple organ co-culture (IdMOC) of A549 and L132 cell. We found that (i) GT is more cytotoxic to lung epithelial cells than FUM, and (ii) GT and FUM act synergistically to inflict pathology to the lung epithelial cell. Reactive oxygen species (ROS) is the master regulator of the cytotoxicity of GT, FUM and GT + FUM. ROS may be produced as a sequel to mitochondrial damage and, thus, mitochondria are both the source of ROS and the target to ROS. GT-, FUM- and GT + FUM-induced DNA damage is mediated either by ROS-dependent mechanism or directly by the fungal toxins. In addition, GT, FUM and GT + FUM may induce protein accumulation. Further, it is speculated that GT and FUM inflict epithelial damage by neutrophil-mediated inflammation. With respect to multiple organ cytotoxicity, GT was found to be cytotoxic at IC50 concentration in the following order: renal epithelial cells < type II epithelial cells < hepatocytes < normal lung epithelial cells. Taken together, GT and FUM alone and in combination contribute to exacerbate the damage of lung epithelial cells and, thus, are involved in the progression of IA.
Collapse
Affiliation(s)
- Loganathan Gayathri
- Department of Pharmaceutical Technology, University College of Engineering, Anna University-BIT Campus, Tiruchchirappalli, Tamil Nadu, 620024, India
- Centre for Excellence in Nanobio Translational Research (Autonomous), University College of Engineering, Anna University-BIT Campus, Tiruchchirappalli, Tamil Nadu, 620024, India
- Department of Biotechnology and Bioinformatics, Holy Cross College (Autonomous), Tiruchchirappalli, Tamil Nadu, 620002, India
| | - Mohammad A Akbarsha
- National College (Autonomous), Tiruchchirappalli, Tamil Nadu, 620001, India
- Mahatma Gandhi-Doerenkamp Centre for Alternatives, Bharathidasan University, Tiruchchirappalli, Tamil Nadu, 620 024, India
| | - Kandasamy Ruckmani
- Department of Pharmaceutical Technology, University College of Engineering, Anna University-BIT Campus, Tiruchchirappalli, Tamil Nadu, 620024, India.
- Centre for Excellence in Nanobio Translational Research (Autonomous), University College of Engineering, Anna University-BIT Campus, Tiruchchirappalli, Tamil Nadu, 620024, India.
| |
Collapse
|
4
|
Granger CJ, Hoyt AK, Moran A, Becker B, Sedani A, Saigh S, Conway SA, Brown J, Galoian K. Cancer stem cells as a therapeutic target in 3D tumor models of human chondrosarcoma: An encouraging future for proline rich polypeptide‑1. Mol Med Rep 2020; 22:3747-3758. [PMID: 32901865 PMCID: PMC7533489 DOI: 10.3892/mmr.2020.11480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
Chondrosarcoma is a malignant bone neoplasm that is refractory to chemotherapy and radiation. With no current biological treatments, mutilating surgical resection is the only effective treatment. Proline rich polypeptide 1 (PRP-1), which is a 15-amino acid inhibitor of mammalian target of rapamycin complex-1 (mTORC1), has been indicated to exert cytostatic and immunomodulatory properties in human chondrosarcoma cells in a monolayer. The aim of the present study was to evaluate the effects of PRP-1 on an in vitro 3D chondrosarcoma tumor model, known as spheroids, and on the cancer stem cells (CSCs) which form spheroids. JJ012 cells were cultured and treated with PRP-1. An ALDEFLUOR™ assay was conducted (with N,N-diethylaminobenzaldehyde as the negative control) to assess aldehyde dehydrogenase (ALDH) activity (a recognized CSC marker), and bulk JJ012, ALDHhigh and PRP-1 treated ALDHlow cells were sorted using flow cytometry. Colony formation and spheroid formation assays of cell fractions, including CSCs, were used to compare the PRP-1-treated groups with the control. CSCs were assessed for early apoptosis and cell death with a modified Annexin V/propidium iodide assay. Western blotting was used to identify mesenchymal stem cell markers (STRO1, CD44 and STAT3), and spheroid self-renewal assays were also conducted. A clonogenic dose-response assay demonstrated that 20 µg/ml PRP-1 was the most effective dose for reducing colony formation capacity. Furthermore, CSC spheroid growth was significantly reduced with increasing doses of PRP-1. Annexin V analysis demonstrated that PRP-1 induced CSC cell death, and that this was not attributed to apoptosis or necrosis. Western blot analysis confirmed the expression of mesenchymal markers, and the spheroid self-renewal assay confirmed the presence of self-renewing CSCs. The results of the present study demonstrate that PRP-1 eliminates anchorage independent CSC growth and spheroid formation, indicating that PRP-1 likely inhibits tumor formation in a murine model. Additionally, a decrease in non-CSC bulk tumor cells indicates an advantageous decline in tumor stromal cells. These findings confirm that PRP-1 inhibits CSC proliferation in a 3D tumor model which mimics the behavior of chondrosarcoma in vivo.
Collapse
Affiliation(s)
- Caroline J Granger
- RMSB Room 8012 (D27), Department of Orthopedic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Aaron K Hoyt
- RMSB Room 8012 (D27), Department of Orthopedic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alexandra Moran
- RMSB Room 8012 (D27), Department of Orthopedic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Beatrice Becker
- RMSB Room 8012 (D27), Department of Orthopedic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Anil Sedani
- RMSB Room 8012 (D27), Department of Orthopedic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Shannon Saigh
- Department of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Sheila A Conway
- RMSB Room 8012 (D27), Department of Orthopedic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jeffrey Brown
- RMSB Room 8012 (D27), Department of Orthopedic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Karina Galoian
- RMSB Room 8012 (D27), Department of Orthopedic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
5
|
Morpho‑functional study of the hypothalamic proline‑rich polypeptide apoptotic activity against mouse Ehrlich ascites carcinoma. Oncol Rep 2020; 44:196-212. [PMID: 32377754 PMCID: PMC7251776 DOI: 10.3892/or.2020.7604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 03/20/2020] [Indexed: 01/22/2023] Open
Abstract
A new type of bioactive polypeptides of the neurosecretory hypothalamus called proline‑rich peptides (PRPs), which are isolated from bovine neurosecretory granules of the neurohypophysis, are synthesized in the form of a common precursor protein (neurophysin vasopressin‑associated glycoprotein). Proline‑rich polypetide 1 (PRP‑1; also known as galarmin) is comprised of 15 amino acids residues, and has been suggested to possess anti‑neurodegenerative, immunoregulatory, hematopoietic, antimicrobial and antitumor properties. The cytostatic, antiproliferative effect of PRP‑1 was demonstrated in the human chondrosarcoma JJ012 and triple negative breast carcinoma MDA MB 231 cell lines. PRP‑1 action is disease and tissue specific. To further explore the antitumorigenic and possible cytotoxic effects of PRP‑1, a morpho‑functional study on the effect of PRP‑1 on a mouse Ehrlich ascites carcinoma (EAC) model was conducted. The PRP‑1‑induced morphological features of EAC cells confirmed the apoptotic nature of PRP‑1, as manifested by cell shrinkage, membrane blebbing, chromosome condensation (pyknosis) and nuclear fragmentation (karyorrhexis). The effect of PRP‑1 on the number of tumor cells incubated for 24 h and their viability in trypan blue‑stained samples lead to a 44% reduction in the number of viable cells on day 11 post‑inoculation vs. 22% inhibition of viable cells after PRP‑1 treatment (0.1 µg/ml) on day 7 post‑inoculation. Apoptosis experiments using an Annexin V‑cyanine 3 apoptosis detection kit indicated that 24 h incubation with 0.1 µg/ml PRP‑1 caused a significant increase in the number of apoptotic cells, reaching 50.33%, compared to 8.33% in the sample control on day 7 post‑inoculation.
Collapse
|
6
|
Galoian K, Luo S, Patel P. Analysis of IL6-protein complexes in chondrosarcoma. Biomed Rep 2018; 8:91-98. [PMID: 29399342 DOI: 10.3892/br.2017.1016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/26/2017] [Indexed: 11/06/2022] Open
Abstract
Cytokines produced in the tumour microenvironment serve important roles in cancer pathogenesis or in the supression of disease progression. Metastatic chondrosarcoma is a cancer of the cartilage, and our group previously reported from a human ELISA assay that interleukin 6 (IL6) expression in JJ012 chondrosarcoma cells was 86-fold lower than that in C28 chondrocytes, indicating its role as an anti-inflammatory and anti-tumorigenic factor. Additionally, to the best of our knowledge, the study was the first to demonstrate downregulation of IL6 in a human chondrosarcoma cell line. To fully elucidate the effect of this IL6 downregulation, it is important to identify protein complexes and components that bind IL6 and potentially affect its gene expression directly or indirectly. To investigate IL6-protein interactions leading to these differences in IL6 expression, the current study performed a gel retardation electrophoretic mobility shift assay (EMSA), followed by 2D gel phoresis, in-gel trypsin digestion and proteomic mass spectral analysis. The results indicated a presence of ubiquitination enzymes in C28 chondrocytes, while none were identified in JJ012 chondrosarcoma cells. While it seems counterintuitive, it may be that the absence of ubiquitination of certain factors leads to the downregulation of IL6 expression in human chondrosarcoma. Therefore, dysregulated ubiquitination may be among the possible mechanisms for the markedly reduced IL6 expression in chondrosarcoma.
Collapse
Affiliation(s)
- Karina Galoian
- Miller School of Medicine, Department of Orthopedics, University of Miami, Miami, FL 33136, USA
| | - Shihua Luo
- Miller School of Medicine, Department of Orthopedics, University of Miami, Miami, FL 33136, USA
| | - Parthik Patel
- Miller School of Medicine, Department of Orthopedics, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
7
|
Toll like receptors TLR1/2, TLR6 and MUC5B as binding interaction partners with cytostatic proline rich polypeptide 1 in human chondrosarcoma. Int J Oncol 2017; 52:139-154. [PMID: 29138803 PMCID: PMC5743405 DOI: 10.3892/ijo.2017.4199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/27/2017] [Indexed: 02/06/2023] Open
Abstract
Metastatic chondrosarcoma is a bone malignancy not responsive to conventional therapies; new approaches and therapies are urgently needed. We have previously reported that mTORC1 inhibitor, antitumorigenic cytostatic proline rich polypeptide 1 (PRP-1), galarmin caused a significant upregulation of tumor suppressors including TET1/2 and SOCS3 (known to be involved in inflammatory processes), downregulation of oncoproteins and embryonic stem cell marker miR-302C and its targets Nanog, c-Myc and Bmi-1 in human chondrosarcoma. To understand better the mechanism of PRP-1 action it was very important to identify the receptor it binds to. Nuclear pathway receptor and GPCR assays indicated that PRP-1 receptors are not G protein coupled, neither do they belong to family of nuclear or orphan receptors. In the present study, we have demonstrated that PRP-1 binding interacting partners belong to innate immunity pattern recognition toll like receptors TLR1/2 and TLR6 and gel forming secreted mucin MUC5B. MUC5B was identified as PRP-1 receptor in human chondrosarcoma JJ012 cell line using Ligand-receptor capture technology. Toll like receptors TLR1/2 and TLR6 were identified as binding interaction partners with PRP-1 by western blot analysis in human chondrosarcoma JJ012 cell line lysates. Immunocytochemistry experiments confirmed the finding and indicated the localization of PRP-1 receptors in the tumor nucleus predominantly. TLR1/2, TLR6 and MUC5B were downregulated in human chondrosarcoma and upregulated in dose-response manner upon PRP-1 treatment. Experimental data indicated that in this cellular context the mentioned receptors had tumor suppressive function.
Collapse
|