1
|
Nguyen HP, Bui VA, Hoang AXT, Van Nguyen P, Nguyen DT, Mai HT, Le HA, Nguyen TL, Hoang NTM, Nguyen LT, Nguyen XH. The Correlation between Peripheral Blood Index and Immune Cell Expansion in Vietnamese Elderly Lung Cancer Patients. Int J Mol Sci 2023; 24:4284. [PMID: 36901716 PMCID: PMC10001827 DOI: 10.3390/ijms24054284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/24/2023] Open
Abstract
(1) Background: The dysfunction and reduced proliferation of peripheral CD8+ T cells and natural killer (NK) cells have been observed in both aging and cancer patients, thereby challenging the adoption of immune cell therapy in these subjects. In this study, we evaluated the growth of these lymphocytes in elderly cancer patients and the correlation of peripheral blood (PB) indices to their expansion. (2) Method: This retrospective study included 15 lung cancer patients who underwent autologous NK cell and CD8+ T cell therapy between January 2016 and December 2019 and 10 healthy individuals. (3) Results: On average, CD8+ T lymphocytes and NK cells were able to be expanded about 500 times from the PB of elderly lung cancer subjects. Particularly, 95% of the expanded NK cells highly expressed the CD56 marker. The expansion of CD8+ T cells was inversely associated with the CD4+:CD8+ ratio and the frequency of PB-CD4+ T cells in PB. Likewise, the expansion of NK cells was inversely correlated with the frequency of PB-lymphocytes and the number of PB-CD8+ T cells. The growth of CD8+ T cells and NK cells was also inversely correlated with the percentage and number of PB-NK cells. (4) Conclusion: PB indices are intrinsically tied to immune cell health and could be leveraged to determine CD8 T and NK cell proliferation capacity for immune therapies in lung cancer patients.
Collapse
Affiliation(s)
- Hoang-Phuong Nguyen
- Vinmec Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
| | - Viet Anh Bui
- Center of Applied Science, Regenerative Medicine, and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
| | - Ai-Xuan Thi Hoang
- Vinmec Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
| | - Phong Van Nguyen
- Center of Applied Science, Regenerative Medicine, and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
| | - Dac-Tu Nguyen
- Center of Applied Science, Regenerative Medicine, and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
| | - Hien Thi Mai
- Center of Applied Science, Regenerative Medicine, and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
| | - Hai-Anh Le
- Vinmec Times City International Hospital, Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
| | - Thanh-Luan Nguyen
- Center of Applied Science, Regenerative Medicine, and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
| | - Nhung Thi My Hoang
- Center of Applied Science, Regenerative Medicine, and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Hanoi 100000, Vietnam
| | - Liem Thanh Nguyen
- Vinmec Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
- Vinmec Times City International Hospital, Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
- College of Health Sciences, VinUniversity, Hanoi 100000, Vietnam
| | - Xuan-Hung Nguyen
- Center of Applied Science, Regenerative Medicine, and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
- College of Health Sciences, VinUniversity, Hanoi 100000, Vietnam
| |
Collapse
|
2
|
Biber G, Sabag B, Raiff A, Ben‐Shmuel A, Puthenveetil A, Benichou JIC, Jubany T, Levy M, Killner S, Barda‐Saad M. Modulation of intrinsic inhibitory checkpoints using nano-carriers to unleash NK cell activity. EMBO Mol Med 2022; 14:e14073. [PMID: 34725941 PMCID: PMC8749471 DOI: 10.15252/emmm.202114073] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 01/22/2023] Open
Abstract
Natural killer (NK) cells provide a powerful weapon mediating immune defense against viral infections, tumor growth, and metastatic spread. NK cells demonstrate great potential for cancer immunotherapy; they can rapidly and directly kill cancer cells in the absence of MHC-dependent antigen presentation and can initiate a robust immune response in the tumor microenvironment (TME). Nevertheless, current NK cell-based immunotherapies have several drawbacks, such as the requirement for ex vivo expansion of modified NK cells, and low transduction efficiency. Furthermore, to date, no clinical trial has demonstrated a significant benefit for NK-based therapies in patients with advanced solid tumors, mainly due to the suppressive TME. To overcome current obstacles in NK cell-based immunotherapies, we describe here a non-viral lipid nanoparticle-based delivery system that encapsulates small interfering RNAs (siRNAs) to gene silence the key intrinsic inhibitory NK cell molecules, SHP-1, Cbl-b, and c-Cbl. The nanoparticles (NPs) target NK cells in vivo, silence inhibitory checkpoint signaling molecules, and unleash NK cell activity to eliminate tumors. Thus, the novel NP-based system developed here may serve as a powerful tool for future NK cell-based therapeutic approaches.
Collapse
Affiliation(s)
- Guy Biber
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - Batel Sabag
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - Anat Raiff
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - Aviad Ben‐Shmuel
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - Abhishek Puthenveetil
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - Jennifer I C Benichou
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - Tammir Jubany
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - Moria Levy
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - Shiran Killner
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - Mira Barda‐Saad
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| |
Collapse
|
3
|
Shen Z, Zhao H, Yao H, Pan X, Yang J, Zhang S, Han G, Zhang X. Dynamic metabolic change of cancer cells induced by natural killer cells at single-cell level studied by label-free mass cytometry. Chem Sci 2022; 13:1641-1647. [PMID: 35282636 PMCID: PMC8827047 DOI: 10.1039/d1sc06366a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/31/2021] [Indexed: 01/10/2023] Open
Abstract
Natural killer cells (NK cells) are important immune cells which have attracted increasing attention in cancer immunotherapy. Due to the heterogeneity of cells, individual cancer cells show different resistance to NK cytotoxicity, which has been revealed by flow cytometry. Here we used label-free mass cytometry (CyESI-MS) as a new tool to analyze the metabolites in Human Hepatocellular Carcinoma (HepG2) cells at the single-cell level after the interaction with different numbers of NK92 MI cells. A large amount of chemical information from individual HepG2 cells was obtained showing the process of cell apoptosis induced by NK cells. Nineteen metabolites which consecutively change during cell apoptosis were revealed by calculating their average relative intensity. Four metabolic pathways were impacted during cell apoptosis which hit 4 metabolites including glutathione (GSH), creatine, glutamic acid and taurine. We found that the HepG2 cells could be divided into two phenotypes after co-culturing with NK cells according to the bimodal distribution of concentration of these 4 metabolites. The correlation between metabolites and different apoptotic pathways in the early apoptosis cell group was established by the 4 metabolites at the single-cell level. This is a new idea of using single-cell specific metabolites to reveal the metabolic heterogeneity in cell apoptosis which would be a powerful means for evaluating the cytotoxicity of NK cells. Label-free mass cytometry is utilized to study the dynamic metabolic change during apoptosis in HepG2 cells induced by NK92 MI cells at the single-cell level. The metabolic heterogeneity of individual HepG2 cells during apoptosis was revealed.![]()
Collapse
Affiliation(s)
- Zizheng Shen
- Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Hansen Zhao
- Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Huan Yao
- Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Xingyu Pan
- Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Jinlei Yang
- Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Sichun Zhang
- Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Guojun Han
- Institute of Medical Technology, Peking University Health Science Center Beijing 100191 China
- Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Department of Biomedical Engineering, Peking University Health Science Center Beijing 100191 P. R. China
| | - Xinrong Zhang
- Department of Chemistry, Tsinghua University Beijing 100084 China
| |
Collapse
|
4
|
Progress for Immunotherapy in Inflammatory Breast Cancer and Emerging Barriers to Therapeutic Efficacy. Cancers (Basel) 2021; 13:cancers13112543. [PMID: 34067257 PMCID: PMC8196819 DOI: 10.3390/cancers13112543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Despite recent advances in the treatment of other breast cancer subtypes, inflammatory breast cancer (IBC) remains a significant clinical challenge, with an overall 5-year survival rate of 39%. Though immunotherapy has shown remarkable efficacy in other difficult-to-treat cancers, such approaches have yet to show substantial therapeutic efficacy in IBC. Here, we summarize the known immune composition of IBC tumors, as well as past and present efforts to advance immunotherapy in the treatment of IBC. Abstract Inflammatory breast cancer (IBC) is a rare and aggressive subtype of breast cancer that carries a particularly poor prognosis. Despite the efficacy of immunotherapy in other difficult to treat forms of breast cancer, progress for immunotherapy in IBC has been difficult. Though immunotherapy has been under clinical investigation in IBC since the 1970s, few approaches have shown significant therapeutic efficacy, and no immunotherapy regimens are currently used in the treatment of IBC. Here, we provide a comprehensive summary of what is known about the immune composition of IBC tumors, clinical and basic science evidence describing the role for immune checkpoints such as PD-L1 in IBC pathobiology, as well as past and present attempts to advance ICIs in the treatment of IBC.
Collapse
|
5
|
Wang C, Han W, Gu Y. Changes in the levels of T lymphocytes and inflammatory factors in the peripheral blood of breast cancer patients during postoperative chemotherapy. Gland Surg 2020; 9:2155-2161. [PMID: 33447566 DOI: 10.21037/gs-20-818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background As one of the main malignant tumors affecting women, the incidence of breast cancer increases year by year. This study aims to analyze the risk factors of infection in breast cancer patients during postoperative chemotherapy by measuring the changes in the levels of T lymphocytes and inflammatory factors in peripheral blood. Methods The clinical data of 156 patients who underwent radical mastectomy and postoperative chemotherapy [docetaxel, epirubicin, cyclophosphamide (TEC)] in our hospital from May 2014 to April 2018 were retrospectively analyzed. According to the presence or absence of infection after chemotherapy, patients were divided into the infection group and the normal group. The risk factors of infection during chemotherapy were analyzed by univariate and multiple logistic regression analyses. Serum before surgery, and before and after chemotherapy, was collected to detect the levels of T lymphocytes and inflammatory factors. Results A total of 36 patients developed an infection during chemotherapy, with an infection rate of 23.08%. The main infection site was the respiratory tract. The main pathogens detected were Gram-negative bacteria and Gram-positive bacteria. The results of univariate analysis showed that there were significant differences in age, diabetes mellitus, clinical TNM staging, white blood cell count (WBC), T lymphocyte subsets CD4+/CD8+, C-reactive protein (CRP) levels, and tumor necrosis factor-α (TNF-α) levels between the 2 groups (P<0.05). Results of logistic regression analysis showed that age ≥60 years old, diabetes mellitus, clinical TNM staging ≥ stage III, WBC <3.5×109/L, CD4+/CD8+ <1.33, TNF-α ≥70 ng/L and CRP ≥60 mg/L were all independent risk factors of postoperative infection (P<0.05). Both before and after chemotherapy, levels of CD3+, CD3+CD4+ and CD4+/CD8+ cells in the infection group were significantly lower than those in the normal group, while levels of CRP, TNF-α and IL-6 were significantly higher than those in the normal group (P<0.05). Conclusions Dynamic monitoring of changes in the levels of T lymphocytes and inflammatory factors during chemotherapy may be of clinical value for predicting the risk of infection. Implementing targeted intervention measures for these risk factors may therefore be beneficial for controlling infection.
Collapse
Affiliation(s)
- Cunliang Wang
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Medical Service, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Han
- Quality Control Division, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanting Gu
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Behravan J, Razazan A, Behravan G. Towards Breast Cancer Vaccines, Progress and Challenges. Curr Drug Discov Technol 2020; 16:251-258. [PMID: 29732989 DOI: 10.2174/1570163815666180502164652] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 01/01/2023]
Abstract
Breast cancer is the second leading cause of cancer death among women. National cancer institute of the US estimates that one in eight women will be diagnosed with breast cancer during their lifetime. Considering the devastating effects of the disease and the alarming numbers many scientists and research groups have devoted their research to fight breast cancer. Several recommendations are to be considered as preventing measures which include living a healthy lifestyle, regular physical activity, weight control and smoking cessation. Early detection of the disease by annual and regular mammography after the age of 40 is recommended by many healthcare institutions. This would help the diagnosis of the disease at an earlier stage and the start of the treatment before it is spread to other parts of the body. Current therapy for breast cancer includes surgical ablation, radiotherapy and chemotherapy which is often associated with adverse effects and even may lead to a relapse of the disease at a later stage. In order to achieve a long-lasting anticancer response with minimal adverse effects, development of breast cancer vaccines is under investigation by many laboratories. The immune system can be stimulated by a vaccine against breast cancer. This approach has attracted a great enthusiasm in recent years. No breast cancer vaccines have been approved for clinical use today. One breast cancer vaccine (NeuVax) has now completed clinical trial phase III and a few preventive and therapeutic breast cancer vaccines are at different steps of development. We think that with the recent advancements in immunotherapy, a breast cancer vaccine is not far from reach.
Collapse
Affiliation(s)
- Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Mediphage Bioceuticals, Inc., 661 University Avenue, Suite 1300, MaRS Centre, West Tower, Toronto M5G0B7, Canada
| | - Atefeh Razazan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazal Behravan
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|