1
|
Xu F, Zhao S, Zhu Y, Zhu J, Kong L, Li H, Ma S, Wang B, Qu Y, Tian Z, Zhao J, Liu L. Phytic acid-based nanomedicine against mTOR represses lipogenesis and immune response for metabolic dysfunction-associated steatohepatitis therapy. LIFE METABOLISM 2024; 3:loae026. [PMID: 39873005 PMCID: PMC11748520 DOI: 10.1093/lifemeta/loae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 01/30/2025]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is one of the most common chronic liver diseases and is mainly caused by metabolic disorders and systemic inflammatory responses. Recent studies have indicated that the activation of the mammalian (or mechanistic) target of rapamycin (mTOR) signaling participates in MASH progression by facilitating lipogenesis and regulating the immune microenvironment. Although several molecular medicines have been demonstrated to inhibit the phosphorylation or activation of mTOR, their poor specificity and side effects limit their clinical application in MASH treatment. Phytic acid (PA), as an endogenous and natural antioxidant in the liver, presents significant anti-inflammatory and lipid metabolism-inhibiting functions to alleviate MASH. In this study, considering the unique phosphate-rich structure of PA, we developed a cerium-PA (CePA) nanocomplex by combining PA with cerium ions possessing phosphodiesterase activity. CePA intervened in the S2448 phosphorylation of mTOR through the occupation effect of phosphate groups, thereby inhibiting the inflammatory response and mTOR-sterol regulatory element-binding protein 1 (SREBP1) regulation axis. The in vivo experiments suggested that CePA alleviated MASH progression and fat accumulation in high-fat diet-fed mice. Mechanistic studies validated that CePA exerts a liver-targeted mTOR repressive function, making it a promising candidate for MASH and other mTOR-related disease treatments.
Collapse
Affiliation(s)
- Fenghua Xu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi’an, Shaanxi 710032, China
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an, Shaanxi 710062, China
| | - Shoujie Zhao
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi 710038, China
| | - Yejing Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi’an, Shaanxi 710032, China
| | - Jun Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi’an, Shaanxi 710032, China
| | - Lingyang Kong
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an, Shaanxi 710062, China
| | - Huichen Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi’an, Shaanxi 710032, China
| | - Shouzheng Ma
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi 710038, China
| | - Bo Wang
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi 710038, China
| | - Yongquan Qu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Zhimin Tian
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Junlong Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Air Force Medical University, Xi’an, Shaanxi 710032, China
- Department of Pediatrics, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi 710000, China
| | - Lei Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi’an, Shaanxi 710032, China
| |
Collapse
|
2
|
Liu J, Qu Y, Zhao Y, Liang F, Ji L, Wang Z, Li J, Zang Z, Huang H, Zhang J, Gu W, Dai L, Yang R. CCDC12 gene methylation in peripheral blood as a potential biomarker for breast cancer detection. Biomarkers 2024; 29:265-275. [PMID: 38776382 DOI: 10.1080/1354750x.2024.2358302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Aberrant DNA methylation has been identified as biomarkers for breast cancer detection. Coiled-coil domain containing 12 gene (CCDC12) implicated in tumorigenesis. This study aims to investigate the potential of blood-based CCDC12 methylation for breast cancer detection. METHODS DNA methylation level of CpG sites (Cytosine-phosphate Guanine dinucleotides) in CCDC12 gene was measured by mass spectrometry in 255 breast cancer patients, 155 patients with benign breast nodules and 302 healthy controls. The association between CCDC12 methylation and breast cancer risk was evaluated by logistic regression and receiver operating characteristic curve analysis. RESULTS A total of eleven CpG sites were analyzed. The CCDC12 methylation levels were higher in breast cancer patients. Compared to the lowest tertile of methylation level in CpG_6,7, CpG_10 and CpG_11, the highest quartile was associated with 82, 91 and 95% increased breast cancer risk, respectively. The CCDC12 methylation levels were associated with estrogen receptor (ER) and human epidermal growth factor 2 (HER2) status. In ER-negative and HER2-positive (ER-/HER2+) breast cancer subtype, the combination of four sites CpG_2, CpG_5, CpG_6,7 and CpG_11 methylation levels could distinguish ER-/HER2+ breast cancer from the controls (AUC = 0.727). CONCLUSION The hypermethylation levels of CCDC12 in peripheral blood could be used for breast cancer detection.
Collapse
Affiliation(s)
- Jingjing Liu
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Yunhui Qu
- Department of Clinical Laboratory in the First Affiliated Hospital & Key Clinical Laboratory of Henan Province, Zhengzhou University, Zhengzhou, Henan, China
| | - Yutong Zhao
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Feifei Liang
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Longtao Ji
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Zhi Wang
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Jinyu Li
- Department of Otology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Zishan Zang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haixia Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Zhang
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Wanjian Gu
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences & Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, China
| | - Rongxi Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Qi J, Shi L, Zhu L, Chen Y, Zhu H, Cheng W, Chen AF, Fu C. Functions, Mechanisms, and therapeutic applications of the inositol pyrophosphates 5PP-InsP 5 and InsP 8 in mammalian cells. J Cardiovasc Transl Res 2024; 17:197-215. [PMID: 37615888 DOI: 10.1007/s12265-023-10427-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
Water-soluble myo-inositol phosphates have long been characterized as second messengers. The signaling properties of these compounds are determined by the number and arrangement of phosphate groups on the myo-inositol backbone. Recently, higher inositol phosphates with pyrophosphate groups were recognized as signaling molecules. 5-Diphosphoinositol 1,2,3,4,6-pentakisphosphate (5PP-InsP5) is the most abundant isoform, constituting more than 90% of intracellular inositol pyrophosphates. 5PP-InsP5 can be further phosphorylated to 1,5-bisdiphosphoinositol 2,3,4,6-tetrakisphosphate (InsP8). These two molecules, 5PP-InsP5 and InsP8, are present in various subcellular compartments, where they participate in regulating diverse cellular processes such as cell death, energy homeostasis, and cytoskeletal dynamics. The synthesis and metabolism of inositol pyrophosphates are subjected to tight regulation, allowing for their highly specific functions. Blocking the 5PP-InsP5/InsP8 signaling pathway by inhibiting the biosynthesis of 5PP-InsP5 demonstrates therapeutic benefits in preclinical studies, and thus holds promise as a therapeutic approach for certain diseases treatment, such as metabolic disorders.
Collapse
Affiliation(s)
- Ji Qi
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Linhui Shi
- Department of Critical Care Unit, Ningbo Medical Center Li Huili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Limei Zhu
- Department of Trauma Orthopedics, Ningbo No.6 Hospital, Ningbo, 315040, China
| | - Yuanyuan Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Hong Zhu
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Weiwei Cheng
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Chenglai Fu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
4
|
Sen A, Huo Y, Elster J, Zage PE, McVicker G. Allele-specific expression reveals genes with recurrent cis-regulatory alterations in high-risk neuroblastoma. Genome Biol 2022; 23:71. [PMID: 35246212 PMCID: PMC8896304 DOI: 10.1186/s13059-022-02640-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuroblastoma is a pediatric malignancy with a high frequency of metastatic disease at initial diagnosis. Neuroblastoma tumors have few recurrent protein-coding mutations but contain extensive somatic copy number alterations (SCNAs) suggesting that mutations that alter gene dosage are important drivers of tumorigenesis. Here, we analyze allele-specific expression in 96 high-risk neuroblastoma tumors to discover genes impacted by cis-acting mutations that alter dosage. RESULTS We identify 1043 genes with recurrent, neuroblastoma-specific allele-specific expression. While most of these genes lie within common SCNA regions, many of them exhibit allele-specific expression in copy neutral samples and these samples are enriched for mutations that are predicted to cause nonsense-mediated decay. Thus, both SCNA and non-SCNA mutations frequently alter gene expression in neuroblastoma. We focus on genes with neuroblastoma-specific allele-specific expression in the absence of SCNAs and find 26 such genes that have reduced expression in stage 4 disease. At least two of these genes have evidence for tumor suppressor activity including the transcription factor TFAP2B and the protein tyrosine phosphatase PTPRH. CONCLUSIONS In summary, our allele-specific expression analysis discovers genes that are recurrently dysregulated by both large SCNAs and other cis-acting mutations in high-risk neuroblastoma.
Collapse
Affiliation(s)
- Arko Sen
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Yuchen Huo
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, California, USA
| | - Jennifer Elster
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, California, USA.,Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital-San Diego, San Diego, California, USA
| | - Peter E Zage
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, California, USA.,Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital-San Diego, San Diego, California, USA
| | - Graham McVicker
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA.
| |
Collapse
|