1
|
Usui K, Saito AI. Radiosensitization treatment using hydrogen peroxide for inoperable rectal cancer. Mol Clin Oncol 2024; 21:68. [PMID: 39091416 PMCID: PMC11289749 DOI: 10.3892/mco.2024.2766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024] Open
Abstract
The treatment outcomes of patients with unresectable rectal cancer are complex, and concurrent chemoradiation therapy is the main treatment option. Radiosensitizers can enhance the effect of localized intratumoral hypoxia, contributing to local control and symptomatic relief. The present study evaluated the feasibility and safety of radiosensitization using hydrogen peroxide combined with radiation therapy (RT) in patients with unresectable rectal cancer. A total of 13 patients with rectal cancer were recruited in the present study. Radiosensitization was performed twice weekly in combination with RT. Gauze soaked in 3% hydrogen peroxide solution was inserted into the anus, ensuring firm contact with the lesion. In total, 45-65 Gy was delivered in 25-33 fractions to the whole pelvis from four directions using 10 MV X-rays 5 days per week. Acute and late adverse events were evaluated 1 and 6 months after the completion of RT. Treatment was well tolerated, with no acute grade 3 or worse events noted, and no patient developed rectal fistula, necrosis, obstruction, perforation, stenosis, ulcer or retroperitoneal hemorrhage. No notable late adverse events, beyond 6 months, were observed at the end of the analysis. All patients experienced pain relief, hemostatic effects and tumor shrinkage. Therefore, the use of a hydrogen peroxide solution-soaked gauze in the rectum may be a promising option for patients with inoperable rectal tumors. The limitations of the present study are that the patient population was small and the observation time was relatively short. This study was retrospectively registered with the University Hospital Medical Information Network Center (trial registration no. R000061902) on April 21, 2024.
Collapse
Affiliation(s)
- Keisuke Usui
- Department of Radiation Oncology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, Tokyo 113-8421, Japan
| | - Anneyuko I. Saito
- Department of Radiation Oncology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, Tokyo 113-8421, Japan
| |
Collapse
|
2
|
Kaynak A, Davis HW, Vallabhapurapu SD, Pak KY, Gray BD, Qi X. SapC-DOPS as a Novel Therapeutic and Diagnostic Agent for Glioblastoma Therapy and Detection: Alternative to Old Drugs and Agents. Pharmaceuticals (Basel) 2021; 14:1193. [PMID: 34832975 PMCID: PMC8619974 DOI: 10.3390/ph14111193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most common type of brain cancer, is extremely aggressive and has a dreadful prognosis. GBM comprises 60% of adult brain tumors and the 5 year survival rate of GBM patients is only 4.3%. Standard-of-care treatment includes maximal surgical removal of the tumor in combination with radiation and temozolomide (TMZ) chemotherapy. TMZ is the "gold-standard" chemotherapy for patients suffering from GBM. However, the median survival is only about 12 to 18 months with this protocol. Consequently, there is a critical need to develop new therapeutic options for treatment of GBM. Nanomaterials have unique properties as multifunctional platforms for brain tumor therapy and diagnosis. As one of the nanomaterials, lipid-based nanocarriers are capable of delivering chemotherapeutics and imaging agents to tumor sites by enhancing the permeability of the compound through the blood-brain barrier, which makes them ideal for GBM therapy and imaging. Nanocarriers also can be used for delivery of radiosensitizers to the tumor to enhance the efficacy of the radiation therapy. Previously, high-atomic-number element-containing particles such as gold nanoparticles and liposomes have been used as radiosensitizers. SapC-DOPS, a protein-based liposomal drug comprising the lipid, dioleoylphosphatidylserine (DOPS), and the protein, saposin C (SapC), has been shown to be effective for treatment of a variety of cancers in small animals, including GBM. SapC-DOPS also has the unique ability to be used as a carrier for delivery of radiotheranostic agents for nuclear imaging and radiotherapeutic purposes. These unique properties make tumor-targeting proteo-liposome nanocarriers novel therapeutic and diagnostic alternatives to traditional chemotherapeutics and imaging agents. This article reviews various treatment modalities including nanolipid-based delivery and therapeutic systems used in preclinical and clinical trial settings for GBM treatment and detection.
Collapse
Affiliation(s)
- Ahmet Kaynak
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, and Brain Tumor Center at UC Neuroscience Institute, 3512 Eden Avenue, Cincinnati, OH 45267, USA; (A.K.); (H.W.D.); (S.D.V.)
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Harold W. Davis
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, and Brain Tumor Center at UC Neuroscience Institute, 3512 Eden Avenue, Cincinnati, OH 45267, USA; (A.K.); (H.W.D.); (S.D.V.)
| | - Subrahmanya D. Vallabhapurapu
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, and Brain Tumor Center at UC Neuroscience Institute, 3512 Eden Avenue, Cincinnati, OH 45267, USA; (A.K.); (H.W.D.); (S.D.V.)
| | - Koon Y. Pak
- Molecular Targeting Technologies, Inc., West Chester, PA 19380, USA; (K.Y.P.); (B.D.G.)
| | - Brian D. Gray
- Molecular Targeting Technologies, Inc., West Chester, PA 19380, USA; (K.Y.P.); (B.D.G.)
| | - Xiaoyang Qi
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, and Brain Tumor Center at UC Neuroscience Institute, 3512 Eden Avenue, Cincinnati, OH 45267, USA; (A.K.); (H.W.D.); (S.D.V.)
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
3
|
Bibb E, Alajlan N, Alsuwailem S, Mitchell B, Brady A, Maqbool M, George R. Internalized Nanoceria Modify the Radiation-Sensitivity Profile of MDA MB231 Breast Carcinoma Cells. BIOLOGY 2021; 10:biology10111148. [PMID: 34827141 PMCID: PMC8614948 DOI: 10.3390/biology10111148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/24/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Owing to its unique redox properties, cerium oxide (nanoceria) nanoparticles have been shown to confer either radiosensitization or radioprotection to human cells. We investigated nanoceria's ability to modify cellular health and reactive oxygen species (ROS) at various absorbed doses (Gray) of ionizing radiation in MDA-MB231 breast carcinoma cells. We used transmission electron microscopy to visualize the uptake and compartmental localization of nanoceria within cells at various treatment concentrations. The effects on apoptosis and other cellular health parameters were assessed using confocal fluorescence imaging and flow cytometry without and with various absorbed doses of ionizing radiation, along with intracellular ROS levels. Our results showed that nanoceria were taken up into cells mainly by macropinocytosis and segregated into concentration-dependent large aggregates in macropinosomes. Confocal imaging and flow cytometry data showed an overall decrease in apoptotic cell populations in proportion to increasing nanoparticle concentrations. This increase in cellular health was observed with a corresponding reduction in ROS at all tested absorbed doses. Moreover, this effect appeared pronounced at lower doses compared to unirradiated or untreated populations. In conclusion, internalized nanoceria confers radioprotection with a corresponding decrease in ROS in MDA-MB231 cells, and this property confers significant perils and opportunities when utilized in the context of radiotherapy.
Collapse
Affiliation(s)
- Emory Bibb
- Nuclear Medicine and Molecular Imaging Sciences Program, Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.B.); (N.A.); (S.A.); (B.M.); (A.B.)
| | - Noura Alajlan
- Nuclear Medicine and Molecular Imaging Sciences Program, Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.B.); (N.A.); (S.A.); (B.M.); (A.B.)
| | - Saad Alsuwailem
- Nuclear Medicine and Molecular Imaging Sciences Program, Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.B.); (N.A.); (S.A.); (B.M.); (A.B.)
| | - Benjamin Mitchell
- Nuclear Medicine and Molecular Imaging Sciences Program, Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.B.); (N.A.); (S.A.); (B.M.); (A.B.)
| | - Amy Brady
- Nuclear Medicine and Molecular Imaging Sciences Program, Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.B.); (N.A.); (S.A.); (B.M.); (A.B.)
| | - Muhammad Maqbool
- Health Physics Program, Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Remo George
- Nuclear Medicine and Molecular Imaging Sciences Program, Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.B.); (N.A.); (S.A.); (B.M.); (A.B.)
| |
Collapse
|