1
|
Cannet F, Sequera C, Veloso PM, El Kaoutari A, Methia M, Richelme S, Kaya M, Cherni A, Dupont M, Borg JP, Morel C, Boursier Y, Maina F. Tracing specificity of immune landscape remodeling associated with distinct anticancer treatments. iScience 2025; 28:112071. [PMID: 40124507 PMCID: PMC11930375 DOI: 10.1016/j.isci.2025.112071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/18/2024] [Accepted: 02/10/2025] [Indexed: 03/25/2025] Open
Abstract
Immune cells within the tumor microenvironment impact cancer progression, resistance, response to treatments. Despite remarkable outcomes for some cancer patients, immunotherapies remain unsatisfactory for others. Here, we designed an experimental setting using the Alb-R26 Met "inside-out" mouse model, faithfully recapitulating molecular features of liver cancer patients, to explore the effects of distinct anticancer targeted therapies on the tumor immune landscape. Using two treatments in clinical trials for different cancer types, Decitabine and MEK+BCL-XL blockage, we show their capability to trigger tumor regression in Alb-R26 Met mice and to superimpose distinct profiles of immune cell types and immune-checkpoints, impacting immunotherapy response. A machine learning approach processing tumor imaging and immune profile data identified a putative signature predicting tumor treatment response in mice and patients. Outcomes exemplify how the tumor immune microenvironment is differentially reshaped by distinct anticancer agents and highlight the importance of measuring its modulation during treatment to optimize oncotherapy and immunotherapy combinations.
Collapse
Affiliation(s)
- Floriane Cannet
- Aix Marseille Univ, CNRS/IN2P3, CPPM, 13009 Marseille, France
- Aix Marseille Univ, CNRS, Inserm, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), 13009 Marseille, France
- Aix Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Turing Center for Living Systems, 13009 Marseille, France
| | - Célia Sequera
- Aix Marseille Univ, CNRS, Inserm, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), 13009 Marseille, France
- Aix Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Turing Center for Living Systems, 13009 Marseille, France
| | - Paula Michea Veloso
- Aix Marseille Univ, CNRS, Inserm, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), 13009 Marseille, France
| | - Abdessamad El Kaoutari
- Aix Marseille Univ, CNRS, Inserm, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), 13009 Marseille, France
| | - Melissa Methia
- Aix Marseille Univ, CNRS, Inserm, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), 13009 Marseille, France
| | - Sylvie Richelme
- Aix Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Turing Center for Living Systems, 13009 Marseille, France
| | - Muge Kaya
- Aix Marseille Univ, CNRS, Inserm, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), 13009 Marseille, France
| | - Afef Cherni
- Aix Marseille Univ, CNRS/IN2P3, CPPM, 13009 Marseille, France
| | - Mathieu Dupont
- Aix Marseille Univ, CNRS/IN2P3, CPPM, 13009 Marseille, France
| | - Jean-Paul Borg
- Aix Marseille Univ, CNRS, Inserm, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), 13009 Marseille, France
- Institut Universitaire de France, Paris, France
| | - Christian Morel
- Aix Marseille Univ, CNRS/IN2P3, CPPM, 13009 Marseille, France
| | | | - Flavio Maina
- Aix Marseille Univ, CNRS, Inserm, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), 13009 Marseille, France
- Aix Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Turing Center for Living Systems, 13009 Marseille, France
| |
Collapse
|
2
|
Khan A, Chawla S, Hussain T, Haque MA. Adagrasib plus cetuximab - a novel therapy in the KRAS G12C mutated colorectal cancer treatment. Ann Med Surg (Lond) 2025; 87:11-12. [PMID: 40109589 PMCID: PMC11918718 DOI: 10.1097/ms9.0000000000002777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/18/2024] [Indexed: 03/22/2025] Open
Affiliation(s)
- Ayesha Khan
- Dow University of Health Sciences, Karachi, Pakistan
| | - Sakshi Chawla
- Dow University of Health Sciences, Karachi, Pakistan
| | - Tooba Hussain
- Dow University of Health Sciences, Karachi, Pakistan
| | - Md Ariful Haque
- Department of Public Health, Atish Dipankar University of Science and Technology, Dhaka, Bangladesh
- Voice of Doctors Research School, Dhaka, Bangladesh
- Department of Orthopaedic Surgery, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Li N, Liu CF, Zhang W, Rao GW. A New Dawn for Targeted Cancer Therapy: Small Molecule Covalent Binding Inhibitor Targeting K-Ras (G12C). Curr Med Chem 2025; 32:647-677. [PMID: 37936461 DOI: 10.2174/0109298673258913231019113814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 11/09/2023]
Abstract
K-Ras is a frequently mutated oncogene in human malignancies, and the development of inhibitors targeting various oncogenic K-Ras mutant proteins is a major challenge in targeted cancer therapy, especially K-Ras(G12C) is the most common mutant, which occurs in pancreatic ductal adenocarcinoma (PDAC), non-small cell lung cancer (NSCLC), colorectal cancer (CRC) and other highly prevalent malignancies. In recent years, significant progress has been made in developing small molecule covalent inhibitors targeting K-Ras(G12C), thanks to the production of nucleophilic cysteine by the G12C mutant, breaking the "spell" that K-Ras protein cannot be used as a drug target. With the successful launch of sotorasib and adagrasib, the development of small molecule inhibitors targeting various K-Ras mutants has continued to gain momentum. In recent years, with the popularization of highly sensitive surface plasmon resonance (SPR) technology, fragment-based drug design strategies have shown great potential in the development of small molecule inhibitors targeting K-Ras(G12C), but with the increasing number of clinically reported acquired drug resistance, addressing inhibitor resistance has gradually become the focus of this field, indirectly indicating that such small molecule inhibitors still the potential for the development of these small molecule inhibitors are also indirectly indicated. This paper traces the development of small molecule covalent inhibitors targeting K-Ras(G12C), highlighting and analyzing the structural evolution and optimization process of each series of inhibitors and the previous inhibitor design methods and strategies, as well as their common problems and general solutions, in order to provide inspiration and help to the subsequent researchers.
Collapse
Affiliation(s)
- Na Li
- College of Pharmaceutical Science, Zhejiang University of Technology and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Chen-Fu Liu
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, P.R. China
| | - Wen Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Zhejiang University of Technology and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
4
|
Toma MM, Skorski T. Star wars against leukemia: attacking the clones. Leukemia 2024; 38:2293-2302. [PMID: 39223295 PMCID: PMC11519008 DOI: 10.1038/s41375-024-02369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Leukemia, although most likely starts as a monoclonal genetic/epigenetic anomaly, is a polyclonal disease at manifestation. This polyclonal nature results from ongoing evolutionary changes in the genome/epigenome of leukemia cells to promote their survival and proliferation advantages. We discuss here how genetic and/or epigenetic aberrations alter intracellular microenvironment in individual leukemia clones and how extracellular microenvironment selects the best fitted clones. This dynamic polyclonal composition of leukemia makes designing an effective therapy a challenging task especially because individual leukemia clones often display substantial differences in response to treatment. Here, we discuss novel therapeutic approach employing single cell multiomics to identify and eradicate all individual clones in a patient.
Collapse
Affiliation(s)
- Monika M Toma
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Lin HT, Takagi M, Kubara K, Yamazaki K, Michikawa F, Okumura T, Naruto T, Morio T, Miyazaki K, Taniguchi H, Otsu M. Monoallelic KRAS (G13C) mutation triggers dysregulated expansion in induced pluripotent stem cell-derived hematopoietic progenitor cells. Stem Cell Res Ther 2024; 15:106. [PMID: 38627844 PMCID: PMC11021011 DOI: 10.1186/s13287-024-03723-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Although oncogenic RAS mutants are thought to exert mutagenic effects upon blood cells, it remains uncertain how a single oncogenic RAS impacts non-transformed multipotent hematopoietic stem or progenitor cells (HPCs). Such potential pre-malignant status may characterize HPCs in patients with RAS-associated autoimmune lymphoproliferative syndrome-like disease (RALD). This study sought to elucidate the biological and molecular alterations in human HPCs carrying monoallelic mutant KRAS (G13C) with no other oncogene mutations. METHODS We utilized induced pluripotent stem cells (iPSCs) derived from two unrelated RALD patients. Isogenic HPC pairs harboring either wild-type KRAS or monoallelic KRAS (G13C) alone obtained following differentiation enabled reliable comparative analyses. The compound screening was conducted with an established platform using KRAS (G13C) iPSCs and differentiated HPCs. RESULTS Cell culture assays revealed that monoallelic KRAS (G13C) impacted both myeloid differentiation and expansion characteristics of iPSC-derived HPCs. Comprehensive RNA-sequencing analysis depicted close clustering of HPC samples within the isogenic group, warranting that comparative studies should be performed within the same genetic background. When compared with no stimulation, iPSC-derived KRAS (G13C)-HPCs showed marked similarity with the wild-type isogenic control in transcriptomic profiles. After stimulation with cytokines, however, KRAS (G13C)-HPCs exhibited obvious aberrant cell-cycle and apoptosis responses, compatible with "dysregulated expansion," demonstrated by molecular and biological assessment. Increased BCL-xL expression was identified amongst other molecular changes unique to mutant HPCs. With screening platforms established for therapeutic intervention, we observed selective activity against KRAS (G13C)-HPC expansion in several candidate compounds, most notably in a MEK- and a BCL-2/BCL-xL-inhibitor. These two compounds demonstrated selective inhibitory effects on KRAS (G13C)-HPCs even with primary patient samples when combined. CONCLUSIONS Our findings indicate that a monoallelic oncogenic KRAS can confer dysregulated expansion characteristics to non-transformed HPCs, which may constitute a pathological condition in RALD hematopoiesis. The use of iPSC-based screening platforms will lead to discovering treatments that enable selective inhibition of RAS-mutated HPC clones.
Collapse
Affiliation(s)
- Huan-Ting Lin
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan.
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Kenji Kubara
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, 300-2635, Japan
| | - Kazuto Yamazaki
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, 300-2635, Japan
| | - Fumiko Michikawa
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, 300-2635, Japan
| | - Takashi Okumura
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Takuya Naruto
- Department of Pediatrics and Developmental Biology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Koji Miyazaki
- Department of Transfusion and Cell Transplantation, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Hideki Taniguchi
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa, 236-0004, Japan
| | - Makoto Otsu
- Department of Transfusion and Cell Transplantation, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan.
- Division of Hematology, Department of Medical Laboratory Sciences, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0373, Japan.
| |
Collapse
|
6
|
Sun S, Meng L, Xing X, Li N, Song Q, Qiao D, Qu L, Liu C, An G, Li Z, Shou C, Lian S. Anti-PRL-3 Monoclonal Antibody inhibits the Growth and Metastasis of colorectal adenocarcinoma. J Cancer 2023; 14:2585-2595. [PMID: 37670977 PMCID: PMC10475362 DOI: 10.7150/jca.81702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
Background: Colon cancer is the one of leading causes of cancer-related death. Chemotherapy, radiotherapy and immunotherapy will be the mainstream in inoperable advanced cancer in clinics. Precision treatment is still lack in colon cancer. Materials and Methods: We developed a series of mAbs targeting PRL-3 through different types of immunogens. The binding domains of mAbs were identified through the ELISA and Western blotting experiments. The antitumor activity of mAbs was verified by cell proliferation, migration and invasion experiments. Xenograft subcutaneous and metastatic models and patient derived Xenograft (PDX) model were established. Results: mAb 12G12 targeting 77-120AA exhibited inhibition in migration and invasion experiments. 12G12 inhibited the migration of multiple types of cancer cells, including colon cancer, gastric cancer, esophagus cancer, liver cancer, lung cancer and pancreatic cancer cells. 12G12 decreased the tumor growth and metastasis in Xenograft subcutaneous and metastatic tumor model, respectively. The antitumor activity of mAb 12G12 was also confirmed in PDX model of gastric cancer. PRL-3 interacted with Golgi protein TMED10. Knockdown of TMED10 expression attenuated the cell migration triggered by purified GST-PRL-3 protein. Conclusion: Our results confirmed the antitumor activity of mAb 12G12 in colorectal adenocarcinoma and provided a new potential targeted therapy of colon cancer.
Collapse
Affiliation(s)
- Shuning Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lin Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaofang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Translational Research, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ningning Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Qian Song
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Dongbo Qiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Like Qu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Caiyun Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Guo An
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Laboratory Animal, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhongwu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chenchao Shou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Shenyi Lian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
7
|
Hondo N, Kitazawa M, Koyama M, Nakamura S, Tokumaru S, Miyazaki S, Kataoka M, Seharada K, Soejima Y. MEK inhibitor and anti-EGFR antibody overcome sotorasib resistance signals and enhance its antitumor effect in colorectal cancer cells. Cancer Lett 2023:216264. [PMID: 37336286 DOI: 10.1016/j.canlet.2023.216264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/21/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
The Kirsten rat sarcoma (KRAS) oncogene was "undruggable" until sotorasib, a KRASG12C selective inhibitor, was developed with promising efficacy. However, inhibition of mutant KRAS in colorectal cancer cells (CRC) is ineffective due to feedback activation of MEK/ERK downstream of KRAS. In this study, we screened for combination therapies of simultaneous inhibition to overcome sotorasib resistance using our previously developed Mix Culture Assay. We evaluated whether there was an additive effect of sotorasib administered alone and in combination with two or three drugs: trametinib, a MEK inhibitor, and cetuximab, an anti-epidermal growth factor receptor (EGFR) antibody. The MAPK pathway was reactivated in KRASG12C-mutated cell lines treated with sotorasib alone. Treatment with KRAS and MEK inhibitors suppressed the reactivation of the MAPK pathway, but upregulated EGFR expression. However, the addition of cetuximab to this combination suppressed EGFR reactivation. This three-drug combination therapy resulted in significant growth inhibition in vitro and in vivo. Our data suggest that reactive feedback may play a key role in the resistance signal in CRC. Simultaneously inhibiting KRAS, MEK, and EGFR is a potentially promising strategy for patients with KRASG12C-mutated CRC.
Collapse
Affiliation(s)
- Nao Hondo
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masato Kitazawa
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Makoto Koyama
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Satoshi Nakamura
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shigeo Tokumaru
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Satoru Miyazaki
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masahiro Kataoka
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kai Seharada
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuji Soejima
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
8
|
Liu C, Ye D, Yang H, Chen X, Su Z, Li X, Ding M, Liu Y. RAS-targeted cancer therapy: Advances in drugging specific mutations. MedComm (Beijing) 2023; 4:e285. [PMID: 37250144 PMCID: PMC10225044 DOI: 10.1002/mco2.285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Rat sarcoma (RAS), as a frequently mutated oncogene, has been studied as an attractive target for treating RAS-driven cancers for over four decades. However, it is until the recent success of kirsten-RAS (KRAS)G12C inhibitor that RAS gets rid of the title "undruggable". It is worth noting that the therapeutic effect of KRASG12C inhibitors on different RAS allelic mutations or even different cancers with KRASG12C varies significantly. Thus, deep understanding of the characteristics of each allelic RAS mutation will be a prerequisite for developing new RAS inhibitors. In this review, the structural and biochemical features of different RAS mutations are summarized and compared. Besides, the pathological characteristics and treatment responses of different cancers carrying RAS mutations are listed based on clinical reports. In addition, the development of RAS inhibitors, either direct or indirect, that target the downstream components in RAS pathway is summarized as well. Hopefully, this review will broaden our knowledge on RAS-targeting strategies and trigger more intensive studies on exploiting new RAS allele-specific inhibitors.
Collapse
Affiliation(s)
- Cen Liu
- Beijing University of Chinese MedicineBeijingChina
| | - Danyang Ye
- Beijing University of Chinese MedicineBeijingChina
| | - Hongliu Yang
- Beijing University of Chinese MedicineBeijingChina
| | - Xu Chen
- Beijing University of Chinese MedicineBeijingChina
| | - Zhijun Su
- Beijing University of Chinese MedicineBeijingChina
| | - Xia Li
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Mei Ding
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yonggang Liu
- Beijing University of Chinese MedicineBeijingChina
| |
Collapse
|
9
|
Khan S, Budamagunta V, Zhou D. Targeting KRAS in pancreatic cancer: Emerging therapeutic strategies. Adv Cancer Res 2023; 159:145-184. [PMID: 37268395 DOI: 10.1016/bs.acr.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
KRAS, a predominant member of the RAS family, is the most frequently mutated oncogene in human pancreatic cancer (∼95% of cases). Mutations in KRAS lead to its constitutive activation and activation of its downstream signaling pathways such as RAF/MEK/ERK and PI3K/AKT/mTOR that promote cell proliferation and provide apoptosis evasion capabilities to cancer cells. KRAS had been considered 'undruggable' until the discovery of the first covalent inhibitor targeting the G12C mutation. While G12C mutations are frequently found in non-small cell lung cancer, these are relatively rare in pancreatic cancer. On the other hand, pancreatic cancer harbors other KRAS mutations such as G12D and G12V. The inhibitors targeting G12D mutation (such as MRTX1133) have been recently developed, whereas those targeting other mutations are still lacking. Unfortunately, KRAS inhibitor monotherapy-associated resistance hinders their therapeutic efficacy. Therefore, various combination strategies have been tested and some yielded promising results, such as combinations with receptor tyrosine kinase, SHP2, or SOS1 inhibitors. In addition, we recently demonstrated that the combination of sotorasib with DT2216 (a BCL-XL-selective degrader) synergistically inhibits G12C-mutated pancreatic cancer cell growth in vitro and in vivo. This is in part because KRAS-targeted therapies induce cell cycle arrest and cellular senescence, which contributes to therapeutic resistance, while their combination with DT2216 can more effectively induce apoptosis. Similar combination strategies may also work for G12D inhibitors in pancreatic cancer. This chapter will review KRAS biochemistry, signaling pathways, different mutations, emerging KRAS-targeted therapies, and combination strategies. Finally, we discuss challenges associated with KRAS targeting and future directions, emphasizing pancreatic cancer.
Collapse
Affiliation(s)
- Sajid Khan
- Department of Biochemistry & Structural Biology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.
| | - Vivekananda Budamagunta
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States; Genetics and Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Daohong Zhou
- Department of Biochemistry & Structural Biology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.
| |
Collapse
|