1
|
Ito M, Yajima S, Suzuki T, Oshima Y, Nanami T, Sumazaki M, Shiratori F, Takizawa H, Li SY, Zhang BS, Yoshida Y, Matsutani T, Hiwasa T, Shimada H. Combination of high anti-SKI and low anti-TMED5 antibody levels is preferable prognostic factor in esophageal carcinoma. Cancer Sci 2024; 115:2209-2219. [PMID: 38634426 PMCID: PMC11247554 DOI: 10.1111/cas.16185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Given that esophageal cancer is highly malignant, the discovery of novel prognostic markers is eagerly awaited. We performed serological identification of antigens by recombinant cDNA expression cloning (SEREX) and identified SKI proto-oncogene protein and transmembrane p24 trafficking protein 5 (TMED5) as antigens recognized by serum IgG antibodies in patients with esophageal carcinoma. SKI and TMED5 proteins were expressed in Escherichia coli, purified by affinity chromatography, and used as antigens. The serum anti-SKI antibody (s-SKI-Ab) and anti-TMED5 antibody (s-TMED5-Ab) levels were significantly higher in 192 patients with esophageal carcinoma than in 96 healthy donors. The presence of s-SKI-Abs and s-TMED5-Abs in the patients' sera was confirmed by western blotting. Immunohistochemical staining showed that the TMED5 protein was highly expressed in the cytoplasm and nuclear compartments of the esophageal squamous cell carcinoma tissues, whereas the SKI protein was localized predominantly in the nuclei. Regarding the overall survival in 91 patients who underwent radical surgery, the s-SKI-Ab-positive and s-TMED5-Ab-negative statuses were significantly associated with a favorable prognosis. Additionally, the combination of s-SKI-Ab-positive and s-TMED5-Ab-negative cases showed an even clearer difference in overall survival as compared with that of s-SKI-Ab-negative and s-TMED5-Ab-positive cases. The s-SKI-Ab and s-TMED5-Ab biomarkers are useful for diagnosing esophageal carcinoma and distinguishing between favorable and poor prognoses.
Collapse
Affiliation(s)
- Masaaki Ito
- Department of Clinical Oncology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Yajima
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo, Japan
| | - Takashi Suzuki
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo, Japan
| | - Yoko Oshima
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo, Japan
| | - Tatsuki Nanami
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo, Japan
| | - Makoto Sumazaki
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo, Japan
| | - Fumiaki Shiratori
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo, Japan
| | - Hirotaka Takizawa
- Port Square Kashiwado Clinic, Kashiwado Memorial Foundation, Chiba, Japan
| | - Shu-Yang Li
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Bo-Shi Zhang
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoichi Yoshida
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoo Matsutani
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takaki Hiwasa
- Department of Clinical Oncology, Toho University Graduate School of Medicine, Tokyo, Japan
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideaki Shimada
- Department of Clinical Oncology, Toho University Graduate School of Medicine, Tokyo, Japan
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Zhang BS, Zhang XM, Ito M, Yajima S, Yoshida K, Ohno M, Nishi E, Wang H, Li SY, Kubota M, Yoshida Y, Matsutani T, Mine S, Machida T, Takemoto M, Yamagata H, Hayashi A, Yokote K, Kobayashi Y, Takizawa H, Kuroda H, Shimada H, Iwadate Y, Hiwasa T. JMJD6 Autoantibodies as a Potential Biomarker for Inflammation-Related Diseases. Int J Mol Sci 2024; 25:4935. [PMID: 38732153 PMCID: PMC11084951 DOI: 10.3390/ijms25094935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Inflammation is closely associated with cerebrovascular diseases, cardiovascular diseases, diabetes, and cancers, and it is accompanied by the development of autoantibodies in the early stage of inflammation-related diseases. Hence, it is meaningful to discover novel antibody biomarkers targeting inflammation-related diseases. In this study, Jumonji C-domain-containing 6 (JMJD6) was identified by the serological identification of antigens through recombinant cDNA expression cloning. In particular, JMJD6 is an antigen recognized in serum IgG from patients with unstable angina pectoris (a cardiovascular disease). Then, the serum antibody levels were examined using an amplified luminescent proximity homogeneous assay-linked immunosorbent assay and a purified recombinant JMJD6 protein as an antigen. We observed elevated levels of serum anti-JMJD6 antibodies (s-JMJD6-Abs) in patients with inflammation-related diseases such as ischemic stroke, acute myocardial infarction (AMI), diabetes mellitus (DM), and cancers (including esophageal cancer, EC; gastric cancer; lung cancer; and mammary cancer), compared with the levels in healthy donors. The s-JMJD6-Ab levels were closely associated with some inflammation indicators, such as C-reactive protein and intima-media thickness (an atherosclerosis index). A better postoperative survival status of patients with EC was observed in the JMJD6-Ab-positive group than in the negative group. An immunohistochemical analysis showed that JMJD6 was highly expressed in the inflamed mucosa of esophageal tissues, esophageal carcinoma tissues, and atherosclerotic plaques. Hence, JMJD6 autoantibodies may reflect inflammation, thereby serving as a potential biomarker for diagnosing specific inflammation-related diseases, including stroke, AMI, DM, and cancers, and for prediction of the prognosis in patients with EC.
Collapse
Affiliation(s)
- Bo-Shi Zhang
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (B.-S.Z.)
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Xiao-Meng Zhang
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Masaaki Ito
- Department of Clinical Oncology, Graduate School of Medicine, Toho University, Tokyo 143-8541, Japan (H.S.)
| | - Satoshi Yajima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Toho University, Tokyo 143-8541, Japan
| | - Kimihiko Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medicine, Toho University, Tokyo 143-8541, Japan
| | - Mikiko Ohno
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Department of Pharmacology, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Eiichiro Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Department of Pharmacology, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Hao Wang
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Shu-Yang Li
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (B.-S.Z.)
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Masaaki Kubota
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (B.-S.Z.)
- Comprehensive Stroke Center, Chiba University Hospital, Chiba 260-8677, Japan
| | - Yoichi Yoshida
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (B.-S.Z.)
- Comprehensive Stroke Center, Chiba University Hospital, Chiba 260-8677, Japan
| | - Tomoo Matsutani
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (B.-S.Z.)
| | - Seiichiro Mine
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (B.-S.Z.)
- Department of Neurological Surgery, Chiba Prefectural Sawara Hospital, Chiba 287-0003, Japan
- Department of Neurological Surgery, Chiba Cerebral and Cardiovascular Center, Chiba 290-0512, Japan
| | - Toshio Machida
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (B.-S.Z.)
- Department of Neurological Surgery, Chiba Cerebral and Cardiovascular Center, Chiba 290-0512, Japan
- Department of Neurosurgery, Eastern Chiba Medical Center, Chiba 283-8686, Japan
| | - Minoru Takemoto
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Department of Diabetes, Metabolism and Endocrinology, School of Medicine, International University of Health and Welfare, Chiba 286-8686, Japan
| | - Hiroki Yamagata
- Department of Diabetes, Metabolism and Endocrinology, School of Medicine, International University of Health and Welfare, Chiba 286-8686, Japan
| | - Aiko Hayashi
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hirotaka Takizawa
- Port Square Kashiwado Clinic, Kashiwado Memorial Foundation, Chiba 260-0025, Japan
| | - Hideyuki Kuroda
- Medical Project Division, Research Development Center, Fujikura Kasei Co., Saitama 340-0203, Japan
| | - Hideaki Shimada
- Department of Clinical Oncology, Graduate School of Medicine, Toho University, Tokyo 143-8541, Japan (H.S.)
- Department of Gastroenterological Surgery, Graduate School of Medicine, Toho University, Tokyo 143-8541, Japan
| | - Yasuo Iwadate
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (B.-S.Z.)
| | - Takaki Hiwasa
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (B.-S.Z.)
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Department of Clinical Oncology, Graduate School of Medicine, Toho University, Tokyo 143-8541, Japan (H.S.)
- Comprehensive Stroke Center, Chiba University Hospital, Chiba 260-8677, Japan
| |
Collapse
|
3
|
Li AX, Martin TA, Lane J, Jiang WG. Cellular Impacts of Striatins and the STRIPAK Complex and Their Roles in the Development and Metastasis in Clinical Cancers (Review). Cancers (Basel) 2023; 16:76. [PMID: 38201504 PMCID: PMC10777921 DOI: 10.3390/cancers16010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Striatins (STRNs) are generally considered to be cytoplasmic proteins, with lower expression observed in the nucleus and at cell-cell contact regions. Together with protein phosphatase 2A (PP2A), STRNs form the core region of striatin-interacting phosphatase and kinase (STRIPAK) complexes through the coiled-coil region of STRN proteins, which is crucial for substrate recruitment. Over the past two decades, there has been an increasing amount of research into the biological and cellular functions of STRIPAK members. STRNs and the constituent members of the STRIPAK complex have been found to regulate several cellular functions, such as cell cycle control, cell growth, and motility. Dysregulation of these cellular events is associated with cancer development. Importantly, their roles in cancer cells and clinical cancers are becoming recognised, with several STRIPAK components found to have elevated expression in cancerous tissues compared to healthy tissues. These molecules exhibit significant diagnostic and prognostic value across different cancer types and in metastatic progression. The present review comprehensively summarises and discusses the current knowledge of STRNs and core STRIPAK members, in cancer malignancy, from both cellular and clinical perspectives.
Collapse
Affiliation(s)
| | - Tracey A. Martin
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (A.X.L.); (J.L.); (W.G.J.)
| | | | | |
Collapse
|
4
|
Li AX, Zeng JJ, Martin TA, Ye L, Ruge F, Sanders AJ, Khan E, Dou QP, Davies E, Jiang WG. Striatins and STRIPAK complex partners in clinical outcomes of patients with breast cancer and responses to drug treatment. Chin J Cancer Res 2023; 35:365-385. [PMID: 37691891 PMCID: PMC10485918 DOI: 10.21147/j.issn.1000-9604.2023.04.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023] Open
Abstract
Objective Striatins (STRNs) family, which contains three multi-domain scaffolding proteins, are cornerstones of the striatins interacting phosphatase and kinase (STRIPAK) complex. Although the role of the STRIPAK complex in cancer has become recognized in recent years, its clinical significance in breast cancer has not been fully established. Methods Using a freshly frozen breast cancer tissue cohort containing both cancerous and adjacent normal mammary tissues, we quantitatively evaluated the transcript-level expression of all members within the STRIPAK complex along with some key interacting and regulatory proteins of STRNs. The expression profile of each molecule and the integrated pattern of the complex members were assessed against the clinical-pathological factors of the patients. The Cancer Genome Atlas (TCGA) dataset was used to evaluate the breast cancer patients' response to chemotherapies. Four human breast cancer cell lines, MDA-MB-231, MDA-MB-361, MCF-7, and SK-BR-3, were subsequently adopted for in vitro work. Results Here we found that high-level expressions of STRIP2, calmodulin, CCM3, MINK1 and SLMAP were respectively associated with shorter overall survival (OS) of patients. Although the similar pattern observed for STRN3, STRN4 and a contrary pattern observed for PPP2CA, PPP2CB and PPPR1A were not significant, the integrated expression profile of STRNs group and PPP2 group members constitutes a highly significant prognostic indicator for OS [P<0.001, hazard ratio (HR)=2.04, 95% confidence interval (95% CI), 1.36-3.07] and disease-free survival (DFS) (P=0.003, HR=1.40, 95% CI, 1.12-1.75). Reduced expression of STRN3 has an influence on the biological functions including adhesiveness and migration. In line with our clinical findings, the breast cancer cells responded to STRN3 knockdown with changes in their chemo-sensitivity, of which the response is also breast cancer subtype dependent. Conclusions Our results suggest a possible role of the STRIPAK complex in breast cancer development and prognosis. Among the members, the expression profile of STRN3 presents a valuable factor for assessing patients' responses to drug treatment.
Collapse
Affiliation(s)
- Amber Xinyu Li
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Jimmy Jianyuan Zeng
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Tracey A Martin
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Fiona Ruge
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Andrew J Sanders
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- School of Natural and Social Science, University of Gloucestershire, Francis Close Hall, Cheltenham GL50 4AZ, UK
| | - Elyas Khan
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit MI 48201, USA
| | - Q. Ping Dou
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit MI 48201, USA
| | - Eleri Davies
- Wales Breast Center, Cardiff and Vales University Health Board, University Llandough Hospital, Cardiff CF64 2XX, UK
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
5
|
Ito M, Yajima S, Suzuki T, Oshima Y, Nanami T, Sumazaki M, Shiratori F, Wang H, Hu L, Takizawa H, Li SY, Iwadate Y, Hiwasa T, Shimada H. The combination of positive anti‑WDR1 antibodies with negative anti‑CFL1 antibodies in serum is a poor prognostic factor for patients with esophageal carcinoma. MEDICINE INTERNATIONAL 2023; 3:11. [PMID: 36875818 PMCID: PMC9983066 DOI: 10.3892/mi.2023.71] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/23/2023] [Indexed: 02/02/2023]
Abstract
WD repeat-containing protein 1 (WDR1) regulates the cofilin 1 (CFL1) activity, promotes cytoskeleton remodeling, and thus, facilitates cell migration and invasion. A previous study reported that autoantibodies against CFL1 and β-actin were useful biomarkers for diagnosing and predicting the prognosis of patients with esophageal carcinoma. Therefore, the present study aimed to evaluate the serum levels of anti-WDR1 antibodies (s-WDR1-Abs) combined with serum levels of anti-CFL1 antibodies (s-CFL1-Abs) in patients with esophageal carcinoma. Serum samples obtained from 192 patients with esophageal carcinoma and other solid cancers. And s-WDR1-Ab and s-CFL1-Ab titers were analyzed using the amplified luminescent proximity homogeneous assay-linked immunosorbent assay. Compared with those of healthy donors, the s-WDR1-Ab levels were significantly higher in the 192 patients with esophageal, whereas these were not significantly higher in the samples from patients with gastric, colorectal, lung, or breast cancer. In 91 patients treated with surgery, sex, tumor depth, lymph node metastasis, stage and C-reactive protein levels were significantly associated with overall survival, as determined using the log-rank test, whereas the squamous cell carcinoma antigen, p53 antibody and s-WDR1-Ab levels tended to be associated with a worse prognosis. Although no significant difference was observed in the survival between the positive and negative groups of s-WDR1-Abs or s-CFL1-Abs alone in the Kaplan-Meier test, the patients in the s-WDR1-Ab-positive and s-CFL1-Ab-negative groups exhibited a significantly poorer prognosis in the overall survival analysis. On the whole, the present study demonstrates that the combination of positive anti-WDR1 antibodies with negative anti-CFL1 antibodies in serum may be a poor prognostic factor for patients with esophageal carcinoma.
Collapse
Affiliation(s)
- Masaaki Ito
- Department of Clinical Oncology, Toho University Graduate School of Medicine, Tokyo 143-8541, Japan
| | - Satoshi Yajima
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo 143-8541, Japan
| | - Takashi Suzuki
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo 143-8541, Japan
| | - Yoko Oshima
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo 143-8541, Japan
| | - Tatsuki Nanami
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo 143-8541, Japan
| | - Makoto Sumazaki
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo 143-8541, Japan
| | - Fumiaki Shiratori
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo 143-8541, Japan
| | - Hao Wang
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China.,Department of Anesthesiology, Stroke Center, The First Affiliated Hospital and Health Science Center, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Liubing Hu
- Department of Anesthesiology, Stroke Center, The First Affiliated Hospital and Health Science Center, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Hirotaka Takizawa
- Port Square Kashiwado Clinic, Kashiwado Memorial Foundation, Chiba 260-0025, Japan
| | - Shu-Yang Li
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yasuo Iwadate
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Takaki Hiwasa
- Department of Clinical Oncology, Toho University Graduate School of Medicine, Tokyo 143-8541, Japan.,Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hideaki Shimada
- Department of Clinical Oncology, Toho University Graduate School of Medicine, Tokyo 143-8541, Japan.,Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo 143-8541, Japan
| |
Collapse
|
6
|
Li SY, Yoshida Y, Kubota M, Zhang BS, Matsutani T, Ito M, Yajima S, Yoshida K, Mine S, Machida T, Hayashi A, Takemoto M, Yokote K, Ohno M, Nishi E, Kitamura K, Kamitsukasa I, Takizawa H, Sata M, Yamagishi K, Iso H, Sawada N, Tsugane S, Iwase K, Shimada H, Iwadate Y, Hiwasa T. Utility of atherosclerosis-associated serum antibodies against colony-stimulating factor 2 in predicting the onset of acute ischemic stroke and prognosis of colorectal cancer. Front Cardiovasc Med 2023; 10:1042272. [PMID: 36844744 PMCID: PMC9954151 DOI: 10.3389/fcvm.2023.1042272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/11/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction Autoantibodies against inflammatory cytokines may be used for the prevention of atherosclerosis. Preclinical studies consider colony-stimulating factor 2 (CSF2) as an essential cytokine with a causal relationship to atherosclerosis and cancer. We examined the serum anti-CSF2 antibody levels in patients with atherosclerosis or solid cancer. Methods We measured the serum anti-CSF2 antibody levels via amplified luminescent proximity homogeneous assay-linked immunosorbent assay based on the recognition of recombinant glutathione S-transferase-fused CSF2 protein or a CSF2-derived peptide as the antigen. Results The serum anti-CSF2 antibody (s-CSF2-Ab) levels were significantly higher in patients with acute ischemic stroke (AIS), acute myocardial infarction (AMI), diabetes mellitus (DM), and chronic kidney disease (CKD) compared with healthy donors (HDs). In addition, the s-CSF2-Ab levels were associated with intima-media thickness and hypertension. The analyzes of samples obtained from a Japan Public Health Center-based prospective study suggested the utility of s-CSF2-Ab as a risk factor for AIS. Furthermore, the s-CSF2-Ab levels were higher in patients with esophageal, colorectal, gastric, and lung cancer than in HDs but not in those with mammary cancer. In addition, the s-CSF2-Ab levels were associated with unfavorable postoperative prognosis in colorectal cancer (CRC). In CRC, the s-CSF2-Ab levels were more closely associated with poor prognosis in patients with p53-Ab-negative CRC despite the lack of significant association of the anti-p53 antibody (p53-Ab) levels with the overall survival. Conclusion S-CSF2-Ab was useful for the diagnosis of atherosclerosis-related AIS, AMI, DM, and CKD and could discriminate poor prognosis, especially in p53-Ab-negative CRC.
Collapse
Affiliation(s)
- Shu-Yang Li
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoichi Yoshida
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
- Comprehensive Stroke Center, Chiba University Hospital, Chiba, Japan
| | - Masaaki Kubota
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Bo-Shi Zhang
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoo Matsutani
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaaki Ito
- Department of Clinical Oncology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Yajima
- Department of Gastroenterological Surgery, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Kimihiko Yoshida
- Department of Gastroenterological Surgery, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Seiichiro Mine
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Neurological Surgery, Chiba Prefectural Sawara Hospital, Chiba, Japan
- Department of Neurological Surgery, Chiba Cerebral and Cardiovascular Center, Chiba, Japan
| | - Toshio Machida
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Neurological Surgery, Chiba Cerebral and Cardiovascular Center, Chiba, Japan
- Department of Neurosurgery, Eastern Chiba Medical Center, Chiba, Japan
| | - Aiko Hayashi
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Minoru Takemoto
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Diabetes, Metabolism and Endocrinology, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Mikiko Ohno
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Eiichiro Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | | | | - Hirotaka Takizawa
- Port Square Kashiwado Clinic, Kashiwado Memorial Foundation, Chiba, Japan
| | - Mizuki Sata
- Department of Public Health Medicine, Faculty of Medicine, and Health Services Research and Development Center, University of Tsukuba, Tsukuba, Japan
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Kazumasa Yamagishi
- Department of Public Health Medicine, Faculty of Medicine, and Health Services Research and Development Center, University of Tsukuba, Tsukuba, Japan
| | - Hiroyasu Iso
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Norie Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Shoichiro Tsugane
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Katsuro Iwase
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideaki Shimada
- Department of Clinical Oncology, Toho University Graduate School of Medicine, Tokyo, Japan
- Department of Gastroenterological Surgery, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Yasuo Iwadate
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
- Comprehensive Stroke Center, Chiba University Hospital, Chiba, Japan
| | - Takaki Hiwasa
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
- Comprehensive Stroke Center, Chiba University Hospital, Chiba, Japan
- Department of Clinical Oncology, Toho University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Ito M, Hiwasa T, Yajima S, Suzuki T, Oshima Y, Nanami T, Sumazaki M, Shiratori F, Li SY, Iwadate Y, Sugimoto K, Mori M, Kuwabara S, Takizawa H, Shimada H. Low anti-CFL1 antibody with high anti-ACTB antibody is a poor prognostic factor in esophageal squamous cell carcinoma. Esophagus 2022; 19:617-625. [PMID: 35780443 DOI: 10.1007/s10388-022-00939-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/19/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Cofilin (CFL1, actin-binding protein) and β-actin (ACTB) are key molecules in the polymerization and depolymerization of actin microfilaments. The levels of these antibodies were analyzed, and the clinicopathological significance in patients with esophageal carcinoma were evaluated. METHODS The levels of anti-CFL1 and anti-ACTB antibodies were analyzed in serum samples of patients with esophageal carcinoma and of healthy donors. Eighty-seven cases underwent radical surgery and the clinicopathological characteristics and prognosis was examined. RESULTS Serum anti-CFL1 antibody (s-CFL1-Ab) levels and anti-ACTB antibody (s-ACTB-Ab) levels were significantly higher in patients with esophageal carcinoma than in healthy donors. Following the receiver operating characteristic curve analysis between healthy donors and esophageal carcinoma, the sensitivity and specificity for serum anti-CFL1 antibody (s-CFL1-Ab) were 53.3% and 68.8%. The sensitivity and specificity for serum anti-ACTB antibody (s-ACTB-Ab) were 54.9% and 67.7%, respectively. Univariate and multivariate analysis showed that s-CFL1-Ab and s-ACTB-Ab levels were not associated with sex, age, tumor depth, lymph node metastasis, or anti-p53-antibody levels. s-ACTB-Ab levels but not s-CFL1-Ab levels significantly correlated with squamous cell carcinoma antigen. Neither s-CFL1-Ab nor s-ACTB-Ab levels alone were obviously related to overall survival. However, patients with low s-CFL1-Ab levels and high s-ACTB-Ab levels exhibited significantly more unfavorable prognoses than those with high s-CFL1-Ab and low s-ACTB-Ab levels. CONCLUSIONS Serum levels of anti-CFL1 and anti-ACTB antibodies were significantly higher in patients with esophageal carcinoma than in healthy donors. A combination of low anti-CFL1 and high anti-ACTB antibodies is a poor prognostic factor in esophageal carcinoma.
Collapse
Affiliation(s)
- Masaaki Ito
- Department of Gastroenterological Surgery and Clinical Oncology, Toho University Graduate School of Medicine, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Takaki Hiwasa
- Department of Gastroenterological Surgery and Clinical Oncology, Toho University Graduate School of Medicine, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan.,Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba, 260-8670, Japan
| | - Satoshi Yajima
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo, Japan
| | - Takashi Suzuki
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo, Japan
| | - Yoko Oshima
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo, Japan
| | - Tatsuki Nanami
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo, Japan
| | - Makoto Sumazaki
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo, Japan
| | - Fumiaki Shiratori
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo, Japan
| | - Shu-Yang Li
- Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba, 260-8670, Japan
| | - Yasuo Iwadate
- Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba, 260-8670, Japan
| | - Kazuo Sugimoto
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Masahiro Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Hirotaka Takizawa
- Port Square Kashiwado Clinic, Kashiwado Memorial Foundation, Chiba, 260-0025, Japan
| | - Hideaki Shimada
- Department of Gastroenterological Surgery and Clinical Oncology, Toho University Graduate School of Medicine, 6-11-1 Omori-Nishi, Ota-ku, Tokyo, 143-8541, Japan. .,Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo, Japan.
| |
Collapse
|
8
|
Hu L, Liu J, Shimada H, Ito M, Sugimoto K, Hiwasa T, Zhou Q, Li J, Shen S, Wang H. Serum Anti-BRAT1 is a Common Molecular Biomarker for Gastrointestinal Cancers and Atherosclerosis. Front Oncol 2022; 12:870086. [PMID: 35656505 PMCID: PMC9152111 DOI: 10.3389/fonc.2022.870086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/05/2022] [Indexed: 12/23/2022] Open
Abstract
Atherosclerosis (AS) and cancers are major global causes of mortality and morbidity. They also share common modifiable pathogenesis risk factors. As the same strategies used to predict AS could also detect certain cancers, we sought novel serum antibody biomarkers of cancers in atherosclerotic sera sampled by liquid biopsy. Using serological antigen identification by cDNA expression cloning (SEREX) and western blot, we screened and detected the antigens BRCA1-Associated ATM Activator 1 (BRAT1) and WD Repeat Domain 1 (WDR1) in the sera of patients with transient ischemic attacks (TIA). Amplified luminescence proximity homogeneous assay-linked immunosorbent assay (AlphaLISA) established the upregulation of serum BRAT1 antibody (BRAT1-Abs) and WDR1 antibody (WDR1-Abs) in patients with AS-related diseases compared with healthy subjects. ROC and Spearman’s correlation analyses showed that BRAT1-Abs and WDR1-Abs could detect AS-related diseases. Thus, serum BRAT1-Abs and WDR1-Abs are potential AS biomarkers. We used online databases and AlphaLISA detection to compare relative antigen and serum antibody expression and found high BRAT1 and BRAT1-Abs expression in patients with GI cancers. Significant increases (> 0.6) in the AUC for BRAT1-Ab vs. esophageal squamous cell carcinoma (ESCC), gastric cancer, and colorectal cancer suggested that BRAT1-Ab exhibited better predictive potential for GI cancers than WDR1-Ab. There was no significant difference in overall survival (OS) between BRAT1-Ab groups (P = 0.12). Nevertheless, a log-rank test disclosed that the highest serum BRAT1-Ab levels were associated with poor ESCC prognosis at 5–60 weeks post-surgery. We validated the foregoing conclusions by comparing serum BRAT1-Ab and WDR1-Ab levels based on the clinicopathological characteristics of the patients with ESCC. Multiple statistical approaches established a correlation between serum BRAT1-Ab levels and platelet counts. BRAT1-Ab upregulation may enable early detection of AS and GI cancers and facilitate the delay of disease progression. Thus, BRAT1-Ab is a potential antibody biomarker for the diagnosis of AS and GI cancers and strongly supports the routine clinical application of liquid biopsy in chronic disease detection and diagnosis.
Collapse
Affiliation(s)
- Liubing Hu
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China.,College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jiyue Liu
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Hideaki Shimada
- Department of Gastroenterological Surgery and Clinical Oncology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Masaaki Ito
- Department of Gastroenterological Surgery and Clinical Oncology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Kazuo Sugimoto
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Takaki Hiwasa
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Qinghua Zhou
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China.,College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jianshuang Li
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China.,College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Si Shen
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Radiology, Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Hao Wang
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Anesthesiology, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|