1
|
Li R, Qiu J, Zhang Z, Qu C, Tang Z, Yu W, Tian Y, Tian H. Prognostic significance of Lymphocyte-activation gene 3 (LAG3) in patients with solid tumors: a systematic review, meta-analysis and pan-cancer analysis. Cancer Cell Int 2023; 23:306. [PMID: 38041068 PMCID: PMC10693146 DOI: 10.1186/s12935-023-03157-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Lymphocyte-activation gene 3 (LAG3) is a recently discovered immune checkpoint molecule that has been linked to immunosuppression and the advancement of cancer in different types of solid tumors. This study aimed to evaluate the prognostic importance of LAG3 and its role in the immune system within solid tumors. METHODS Extensive literature searches were conducted using the Pubmed, EMBASE, and Cochrane Library databases to identify relevant studies exploring the effect of LAG3 on survival outcomes. Pooled hazard ratios (HRs) with its 95% confidence intervals (CIs) were calculated to evaluate the prognostic values of LAG3. Afterwards, subgroup analysis and sensitivity analysis were conducted. Pan-cancer analysis investigated the possible relationships between LAG3 expression and genetic alterations, RNA methylation modification-related genes, genomic instability, immune checkpoint genes, and infiltration of immune cells. RESULTS A total of 43 studies with 7,118 patients were included in this analysis. Higher expression of LAG3 was associated with worse overall survival (HR = 1.10, 95% CI 1.01-1.19, P = 0.023), but not disease-free survival (HR = 1.41, 95% CI 0.96-2.07, P = 0.078), progression-free survival (HR = 1.12, 95% CI 0.90-1.39, P = 0.317) or recurrence-free survival (HR = 0.98, 95% CI 0.81-1.19, P = 0.871). Subgroup analysis showed that LAG3 might play different prognostic roles in different solid tumors. LAG3 expression was positively associated with immune cell infiltration and immune checkpoint genes in all of the cancers included. LAG3 expression was also found to be associated with microsatellite instability (MSI), copy number variation (CNV), simple nucleoside variation (SNV), tumor mutation burden (TMB), and neoantigen in various types of cancers. CONCLUSIONS Elevated expression of LAG3 is linked to poorer prognosis among patients diagnosed with solid cancers. LAG3 might play varying prognostic roles in different types of solid tumors. Given its substantial involvement in cancer immunity and tumorigenesis, LAG3 has garnered attention as a promising prognostic biomarker and a potential target for immunotherapy.
Collapse
Affiliation(s)
- Rongyang Li
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Jianhao Qiu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Zhan Zhang
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Chenghao Qu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Zhanpeng Tang
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Wenhao Yu
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Yu Tian
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
2
|
Fang L, Yao Y, Guan X, Liao Y, Wang B, Cui L, Han S, Zou H, Su D, Ma Y, Liu B, Wang Y, Huang R, Ruan Y, Yu X, Yao Y, Liu C, Zhang Y. China special issue on gastrointestinal tumors-Regulatory-immunoscore-A novel indicator to guide precision adjuvant chemotherapy in colorectal cancer. Int J Cancer 2023; 153:1904-1915. [PMID: 37085990 DOI: 10.1002/ijc.34539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 04/23/2023]
Abstract
Novel biomarkers are essential to improve the treatment efficacy and overall survival of stage II and III colorectal cancer (CRC), allowing for personalized treatment decisions. Here, the densities of CD8+ and FOXP3+ T cells in the tumor and invasive margin were processed by immunohistochemistry and digital pathology to form a scoring system named regulatory-Immunoscore (RIS). Cox proportional hazards regression models were used to determine the risk factors associated with time to recurrence. Harrell's concordance index and the time-dependent area under the curve were used to assess model performance. A total of 1213 stage I-III DNA mismatch repair-proficient colorectal cancer (pMMR CRC) patients were randomly assigned to a training set (n = 642) and a validation set (n = 571). From the Cox multivariable analysis, the association of RIS with survival was independent of patient age, sex and anatomy-based tumor risk parameters (P < .0001). For stage II patients, chemotherapy was significantly associated with better recurrence time in patients with low (95% confidence interval [CI]: 0.11-0.54, P = .001) and intermediate (95% CI = 0.25-0.57, P < .001) RIS values. In stage III patients treated with adjuvant chemotherapy, a treatment duration of 6 or more months was significantly associated with better recurrence time in patients with intermediate RIS values (95% CI = 0.38-0.90, P = .016) when compared with duration under 6 months. Therefore, these findings suggest that RIS is reliable for predicting recurrence risk and treatment responsiveness for patients with stage I-III pMMR CRC.
Collapse
Affiliation(s)
- Lin Fang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Yang Yao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Xin Guan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Yuanyu Liao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Bojun Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Luying Cui
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Shuling Han
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Haoyi Zou
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dan Su
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yue Ma
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Biao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yao Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Rui Huang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Yuli Ruan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Xuefan Yu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yuanfei Yao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Chao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| |
Collapse
|
3
|
Wu L, Gao Y, Xie S, Ye W, Uemura Y, Zhang R, Yu Y, Li J, Chen M, Wu Q, Cui P, Liu H, Mu S, Li Y, Wang L, Liu C, Li J, Zhang L, Jiao S, Zhang G, Liu T. The level of macrophage migration inhibitory factor is negatively correlated with the efficacy of PD-1 blockade immunotherapy combined with chemotherapy as a neoadjuvant therapy for esophageal squamous cell carcinoma. Transl Oncol 2023; 37:101775. [PMID: 37678132 PMCID: PMC10492201 DOI: 10.1016/j.tranon.2023.101775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/10/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
PURPOSE This study aimed to screen biomarkers to predict the efficacy of programmed cell death 1 (PD-1) blockade immunotherapy combined with chemotherapy as neoadjuvant therapy for esophageal squamous cell carcinoma (ESCC). METHODS In the first stage of the study, the baseline concentrations of 40 tumor-related chemokines in the serum samples of 50 patients were measured to screen for possible biomarkers. We investigated whether the baseline concentration of the selected chemokine was related to the therapeutic outcomes and tumor microenvironment states of patients treated with the therapy. In the second stage, the reliability of the selected biomarkers was retested in 34 patients. RESULTS The baseline concentration of macrophage migration inhibitory factor (MIF) was negatively correlated with disease-free survival (DFS) and overall survival (OS) in patients treated with the therapy. In addition, a low baseline expression level of MIF is related to a better tumor microenvironment for the treatment of ESCC. A secondary finding was that effective treatment decreased the serum concentration of MIF. CONCLUSION Baseline MIF levels were negatively correlated with neoadjuvant therapy efficacy. Thus, MIF may serve as a predictive biomarker for this therapy. The accuracy of the prediction could be improved if the serum concentration of MIF is measured again after the patient received several weeks of treatment.
Collapse
Affiliation(s)
- Liangliang Wu
- Laboratory of Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China; Institute of Oncology, Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yiming Gao
- Department of Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shengzhi Xie
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wan Ye
- Institute of Oncology, Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yasushi Uemura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan
| | - Rong Zhang
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan
| | - Yanju Yu
- Institute of Oncology, Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jinfeng Li
- Institute of Oncology, Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Man Chen
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Lang Fang, China
| | - Qiyan Wu
- Laboratory of Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Pengfei Cui
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongyu Liu
- Department of Neurosurgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan, China
| | - Shuai Mu
- Department of Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yilan Li
- Institute of Oncology, Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lingxiong Wang
- Laboratory of Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chunxi Liu
- Laboratory of Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiahui Li
- Institute of Oncology, Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lijun Zhang
- Laboratory of Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shunchang Jiao
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Guoqing Zhang
- Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Tianyi Liu
- Institute of Oncology, Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
4
|
Ding Y, Gong Y, Zeng H, Song G, Yu Z, Fu B, Liu Y, Huang D, Zhong Y. ZNF765 is a prognostic biomarker of hepatocellular carcinoma associated with cell cycle, immune infiltration, m 6A modification, and drug susceptibility. Aging (Albany NY) 2023; 15:6179-6211. [PMID: 37400985 PMCID: PMC10373972 DOI: 10.18632/aging.204827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 06/05/2023] [Indexed: 07/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is an ongoing challenge worldwide. Zinc finger protein 765 (ZNF765) is an important zinc finger protein that is related to the permeability of the blood-tumor barrier. However, the role of ZNF765 in HCC is unclear. This study evaluated the expression of ZNF765 in hepatocellular carcinoma and the impact of its expression on patient prognosis based on The Cancer Genome Atlas (TCGA). Immunohistochemical assays (IHC) were used to examine protein expression. Besides, a colony formation assay was used to examine cell viability. We also explored the relationship between ZNF765 and chemokines in the HCCLM3 cells by qRT-PCR. Moreover, we examined the effect of ZNF765 on cell resistance by measurement of the maximum half-inhibitory concentration. Our research revealed that ZNF765 expression in HCC samples was higher than that in normal samples, whose upregulation was not conducive to the prognosis. The results of GO, KEGG, and GSEA showed that ZNF765 was associated with the cell cycle and immune infiltration. Furthermore, we confirmed that the expression of ZNF765 had a strong connection with the infiltration level of various immune cells, such as B cells, CD4+ T cells, macrophages, and neutrophils. In addition, we found that ZNF765 was associated with m6A modification, which may affect the progression of HCC. Finally, drug sensitivity testing found that patients with HCC were sensitive to 20 drugs when they expressed high levels of ZNF765. In conclusion, ZNF765 may be a prognostic biomarker related to cell cycle, immune infiltration, m6A modification, and drug sensitivity for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yongqi Ding
- Second Affiliated Hospital of Nanchang University, Nanchang, China
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yiyang Gong
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Hong Zeng
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Gelin Song
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Zichuan Yu
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Bidong Fu
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Yue Liu
- Second College of Clinical Medicine, Nanchang University, Nanchang, China
| | - Da Huang
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanying Zhong
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Peiyuan G, Xuhua H, Ganlin G, Xu Y, Zining L, Jiachao H, Bin Y, Guiying W. Construction and validation of a nomogram model for predicting the overall survival of colorectal cancer patients. BMC Surg 2023; 23:182. [PMID: 37386397 DOI: 10.1186/s12893-023-02018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 04/26/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a frequent cancer worldwide with varied survival outcomes. OBJECTIVE We aimed to develop a nomogram model to predict the overall survival (OS) of CRC patients after surgery. DESIGN This is a retrospective study. SETTING This study was conducted from 2015 to 2016 in a single tertiary center for CRC. PATIENTS CRC patients who underwent surgery between 2015 and 2016 were enrolled and randomly assigned into the training (n = 480) and validation (n = 206) groups. The risk score of each subject was calculated based on the nomogram. All participants were categorized into two subgroups according to the median value of the score. MAIN OUTCOME MEASURES The clinical characteristics of all patients were collected, significant prognostic variables were determined by univariate analysis. Least absolute shrinkage and selection operator (LASSO) regression was applied for variable selection. The tuning parameter (λ) for LASSO regression was determined by cross-validation. Independent prognostic variables determined by multivariable analysis were used to establish the nomogram. The predictive capacity of the model was assessed by risk group stratification. RESULTS Infiltration depth, macroscopic classification, BRAF, carbohydrate antigen 19 - 9 (CA-199) levels, N stage, M stage, TNM stage, carcinoembryonic antigen levels, number of positive lymph nodes, vascular tumor thrombus, and lymph node metastasis were independent prognostic factors. The nomogram established based on these factors exhibited good discriminatory capacity. The concordance indices for the training and validation groups were 0.796 and 0.786, respectively. The calibration curve suggested favorable agreement between predictions and observations. Moreover, the OS of different risk subgroups was significantly different. LIMITATIONS The limitations of this work included small sample size and single-center design. Also, some prognostic factors could not be included due to the retrospective design. CONCLUSIONS A prognostic nomogram for predicting the OS of CRC patients after surgery was developed, which might be helpful for evaluating the prognosis of CRC patients.
Collapse
Affiliation(s)
- Guo Peiyuan
- The Second General Surgery, The Fourth Hospital of Hebei Medical University, NO.12, JianKang Road, Shijiazhuang, Hebei Province, PR China
| | - Hu Xuhua
- The Second General Surgery, The Fourth Hospital of Hebei Medical University, NO.12, JianKang Road, Shijiazhuang, Hebei Province, PR China
| | - Guo Ganlin
- The Second General Surgery, The Fourth Hospital of Hebei Medical University, NO.12, JianKang Road, Shijiazhuang, Hebei Province, PR China
| | - Yin Xu
- The Department of Gastrointestinal Surgery, The Third Hospital of Hebei Medical University, NO.139, Ziqiang Road, Shijiazhuang, Hebei Province, PR China
| | - Liu Zining
- The Second General Surgery, The Fourth Hospital of Hebei Medical University, NO.12, JianKang Road, Shijiazhuang, Hebei Province, PR China
| | - Han Jiachao
- The Second General Surgery, The Fourth Hospital of Hebei Medical University, NO.12, JianKang Road, Shijiazhuang, Hebei Province, PR China
| | - Yu Bin
- The Second General Surgery, The Fourth Hospital of Hebei Medical University, NO.12, JianKang Road, Shijiazhuang, Hebei Province, PR China.
| | - Wang Guiying
- The Second General Surgery, The Fourth Hospital of Hebei Medical University, NO.12, JianKang Road, Shijiazhuang, Hebei Province, PR China.
- The Department of General Surgery, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang, Hebei Province, PR China.
| |
Collapse
|
6
|
Abushukair H, Ababneh O, Zaitoun S, Saeed A. Primary and secondary immune checkpoint inhibitors resistance in colorectal cancer: Key mechanisms and ways to overcome resistance. Cancer Treat Res Commun 2022; 33:100643. [PMID: 36175334 DOI: 10.1016/j.ctarc.2022.100643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/22/2022] [Indexed: 02/09/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have significantly advanced colorectal cancer treatment in recent years. Antibodies that target the proteins programmed cell death-1 (PD-1), programmed cell death-1 ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) are among the ICIs that are currently being used in clinical practice. However, in colorectal cancer, ICI's effectiveness is limited to a fraction of patients with microsatellite instability-high (MSI-H), which only accounts for about 5% of advanced cases. The tumor microenvironment and intrinsic changes in tumor cells are just a couple of the many mechanisms that play a role in ICI primary or secondary resistance. In order to advance precision medicine and broaden the population benefiting from ICI, this paper highlights the main underlying mechanisms of ICIs resistance and suggested techniques to overcome it.
Collapse
Affiliation(s)
- Hassan Abushukair
- Faculty of Medicine, Jordan University of Science and Technology, 22110, Irbid, Jordan
| | - Obada Ababneh
- Faculty of Medicine, Jordan University of Science and Technology, 22110, Irbid, Jordan
| | - Sara Zaitoun
- Faculty of Medicine, Yarmouk University, 21163, Irbid, Jordan
| | - Anwaar Saeed
- Department of Medicine, Division of Medical Oncology, University of Kansas Cancer Center, 66205, Kansas City, KS, United States of America.
| |
Collapse
|