1
|
Li Y, Fu J, Wang H. Advancements in Targeting Ion Channels for the Treatment of Neurodegenerative Diseases. Pharmaceuticals (Basel) 2024; 17:1462. [PMID: 39598374 PMCID: PMC11597607 DOI: 10.3390/ph17111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Ion channels are integral membrane proteins embedded in biological membranes, and they comprise specific proteins that control the flow of ion transporters in and out of cells, playing crucial roles in the biological functions of different cells. They maintain the homeostasis of water and ion metabolism by facilitating ion transport and participate in the physiological processes of neurons and glial cells by regulating signaling pathways. Neurodegenerative diseases are a group of disorders characterized by the progressive loss of neurons in the central nervous system (CNS) or peripheral nervous system (PNS). Despite significant progress in understanding the pathophysiological processes of various neurological diseases in recent years, effective treatments for mitigating the damage caused by these diseases remain inadequate. Increasing evidence suggests that ion channels are closely associated with neuroinflammation; oxidative stress; and the characteristic proteins in neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Therefore, studying the pathogenic mechanisms closely related to ion channels in neurodegenerative diseases can help identify more effective therapeutic targets for treating neurodegenerative diseases. Here, we discuss the progress of research on ion channels in different neurodegenerative diseases and emphasize the feasibility and potential of treating such diseases from the perspective of ion channels.
Collapse
Affiliation(s)
- Yuxuan Li
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.L.); (J.F.)
| | - Jingxuan Fu
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.L.); (J.F.)
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Hui Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China; (Y.L.); (J.F.)
| |
Collapse
|
2
|
Du CM, Leu WJ, Jiang YH, Chan SH, Chen IS, Chang HS, Hsu LC, Hsu JL, Guh JH. Cardenolide glycosides sensitize gefitinib-induced apoptosis in non-small cell lung cancer: inhibition of Na +/K +-ATPase serving as a switch-on mechanism. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6533-6550. [PMID: 38451282 DOI: 10.1007/s00210-024-03031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
The treatment of non-small cell lung cancer (NSCLC) is known as a significant level of unmet medical need in spite of the progress in targeted therapy and personalized therapy. Overexpression of the Na+/K+-ATPase contributes to NSCLC progression, suggesting its potentiality in antineoplastic approaches. Epi-reevesioside F, purified from Reevesia formosana, showed potent anti-NSCLC activity through inhibiting the Na+/K+-ATPase, leading to internalization of α1- and α3-subunits in Na+/K+-ATPase and suppression of Akt-independent mTOR-p70S6K-4EBP1 axis. Epi-reevesioside F caused a synergistic amplification of apoptosis induced by gefitinib but not cisplatin, docetaxel, etoposide, paclitaxel, or vinorelbine in both NCI-H460 and A549 cells. The synergism was validated by enhanced activation of the caspase cascade. Bax cleavage, tBid formation, and downregulation of Bcl-xL and Bcl-2 contributed to the synergistic apoptosis induced by the combination treatment of epi-reevesioside F and gefitinib. The increase of membrane DR4 and DR5 levels, intracellular Ca2+ concentrations, and active m-calpain expression were responsible for the caspase-8 activation and Bax cleavage. The increased α-tubulin acetylation and activation of MAPK (i.e., p38 MAPK, Erk, and JNK) depending on cell types contributed to the synergistic mechanism under combination treatment. These signaling pathways that converged on profound c-Myc downregulation led to synergistic apoptosis in NSCLC. In conclusion, the data suggest that epi-reevesioside F inhibits the Na+/K+-ATPase and displays potent anti-NSCLC activity. Epi-reevesioside F sensitizes gefitinib-induced apoptosis through multiple pathways that converge on c-Myc downregulation. The data support the inhibition of Na+/K+-ATPase as a switch-on mechanism to sensitize gefitinib-induced anti-NSCLC activity.
Collapse
Affiliation(s)
- Chi-Min Du
- School of Pharmacy, National Taiwan University, No. 33, Linsen S. Rd., Zhongzheng Dist, Taipei, 100, Taiwan
| | - Wohn-Jenn Leu
- School of Pharmacy, National Taiwan University, No. 33, Linsen S. Rd., Zhongzheng Dist, Taipei, 100, Taiwan
| | - Yi-Huei Jiang
- School of Pharmacy, National Taiwan University, No. 33, Linsen S. Rd., Zhongzheng Dist, Taipei, 100, Taiwan
| | - She-Hung Chan
- Department of Cosmetic Science, Providence University, 200, Sec. 7, Taiwan Boulevard, Shalu Dist, Taichung, 43301, Taiwan
| | - Ih-Sheng Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Taiwan, Kaohsiung, Taiwan
| | - Hsun-Shuo Chang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Taiwan, Kaohsiung, Taiwan
| | - Lih-Ching Hsu
- School of Pharmacy, National Taiwan University, No. 33, Linsen S. Rd., Zhongzheng Dist, Taipei, 100, Taiwan
| | - Jui-Ling Hsu
- School of Pharmacy, National Taiwan University, No. 33, Linsen S. Rd., Zhongzheng Dist, Taipei, 100, Taiwan.
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan, 333, Taiwan.
- Department of Medical Oncology, New Taipei Municipal TuCheng Hospital, New Taipei City, 236, Taiwan.
| | - Jih-Hwa Guh
- School of Pharmacy, National Taiwan University, No. 33, Linsen S. Rd., Zhongzheng Dist, Taipei, 100, Taiwan.
| |
Collapse
|