1
|
Kemberi M, Minns AF, Santamaria S. Soluble Proteoglycans and Proteoglycan Fragments as Biomarkers of Pathological Extracellular Matrix Remodeling. PROTEOGLYCAN RESEARCH 2024; 2:e70011. [PMID: 39600538 PMCID: PMC11587194 DOI: 10.1002/pgr2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Proteoglycans and their proteolytic fragments diffuse into biological fluids such as plasma, serum, urine, or synovial fluid, where they can be detected by antibodies or mass-spectrometry. Neopeptides generated by the proteolysis of proteoglycans are recognized by specific neoepitope antibodies and can act as a proxy for the activity of certain proteases. Proteoglycan and proteoglycan fragments can be potentially used as prognostic, diagnostic, or theragnostic biomarkers for several diseases characterized by dysregulated extracellular matrix remodeling such as osteoarthritis, rheumatoid arthritis, atherosclerosis, thoracic aortic aneurysms, central nervous system disorders, viral infections, and cancer. Here, we review the main mechanisms accounting for the presence of soluble proteoglycans and their fragments in biological fluids, their potential application as diagnostic, prognostic, or theragnostic biomarkers, and highlight challenges and opportunities ahead of their clinical translation.
Collapse
Affiliation(s)
- Marsioleda Kemberi
- Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonEnglandUK
| | - Alexander F. Minns
- Department of Biochemical SciencesSchool of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordSurreyUK
| | - Salvatore Santamaria
- Department of Biochemical SciencesSchool of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordSurreyUK
| |
Collapse
|
2
|
Wang X, Chen H, Song F, Zuo K, Chen X, Zhang X, Liang L, Ta Q, Zhang L, Li J. Resveratrol: a potential medication for the prevention and treatment of varicella zoster virus-induced ischemic stroke. Eur J Med Res 2023; 28:400. [PMID: 37794518 PMCID: PMC10552394 DOI: 10.1186/s40001-023-01291-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/14/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Infection rate of varicella zoster virus (VZV) is 95% in humans, and VZV infection is strongly associated with ischemic stroke (IS). However, the underlying molecular mechanisms of VZV-induced IS are still unclear, and there are no effective agents to treat and prevent VZV-induced IS. OBJECTIVE By integrating bioinformatics, this study explored the interactions between VZV and IS and potential medication to treat and prevent VZV-induced IS. METHODS In this study, the VZV and IS datasets from the GEO database were used to specify the common genes. Then, bioinformatics analysis including Gene Ontology, Kyoto Encyclopedia Genes Genomes and Protein-Protein Interaction network analysis was performed. Further, the hub genes, transcription factor (TF) gene interactions, TF-miRNA co-regulatory network and potential drug were obtained. Finally, validation was performed using molecular docking and molecular dynamics simulations. RESULTS The potential molecular mechanisms of VZV-induced IS were studied using multiple bioinformatics tools. Ten hub genes were COL1A2, DCN, PDGFRB, ACTA2, etc. TF genes and miRNAs included JUN, FOS, CREB, BRCA1, PPARG, STAT3, miR-29, etc. A series of mechanism may be involved, such as inflammation, oxidative stress, blood-brain barrier disruption, foam cell generation and among others. Finally, we proposed resveratrol as a potential therapeutic medicine for the prevention and treatment of VZV-induced IS. Molecular docking and molecular dynamics results showed that resveratrol and hub genes exhibited strong binding score. CONCLUSIONS Resveratrol could be an alternative for the prevention and treatment of VZV-IS. More in vivo and in vitro studies are needed in the future to fully explore the molecular mechanisms between VZV and IS and for medication development.
Collapse
Affiliation(s)
- Xu Wang
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Hao Chen
- Department of Neurovascular Surgery, First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Feiyu Song
- Jilin Connell Pharmaceutical Co., Ltd, JilinJilin, 132013, China
| | - Kuiyang Zuo
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Xin Chen
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Xu Zhang
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Lanqian Liang
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Qiyi Ta
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Lin Zhang
- China-Japan Union Hospital of Jilin University, Changchun, 130021, Jilin, China.
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
3
|
Li H, Ghorbani S, Ling CC, Yong VW, Xue M. The extracellular matrix as modifier of neuroinflammation and recovery in ischemic stroke and intracerebral hemorrhage. Neurobiol Dis 2023; 186:106282. [PMID: 37683956 DOI: 10.1016/j.nbd.2023.106282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023] Open
Abstract
Stroke is the second leading cause of death worldwide and has two major subtypes: ischemic stroke and hemorrhagic stroke. Neuroinflammation is a pathological hallmark of ischemic stroke and intracerebral hemorrhage (ICH), contributing to the extent of brain injury but also in its repair. Neuroinflammation is intricately linked to the extracellular matrix (ECM), which is profoundly altered after brain injury and in aging. In the early stages after ischemic stroke and ICH, immune cells are involved in the deposition and remodeling of the ECM thereby affecting processes such as blood-brain barrier and cellular integrity. ECM components regulate leukocyte infiltration into the central nervous system, activate a variety of immune cells, and induce the elevation of matrix metalloproteinases (MMPs) after stroke. In turn, excessive MMPs may degrade ECM into components that are pro-inflammatory and injurious. Conversely, in the later stages after stroke, several ECM molecules may contribute to tissue recovery. For example, thrombospondin-1 and biglycan may promote activity of regulatory T cells, inhibit the synthesis of proinflammatory cytokines, and aid regenerative processes. We highlight these roles of the ECM in ischemic stroke and ICH and discuss their potential cellular and molecular mechanisms. Finally, we discuss therapeutics that could be considered to normalize the ECM in stroke. Our goal is to spur research on the ECM in order to improve the prognosis of ischemic stroke and ICH.
Collapse
Affiliation(s)
- Hongmin Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China; Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| | - Samira Ghorbani
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| | - Chang-Chun Ling
- Department of Chemistry, University of Calgary, Alberta, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Alberta, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Kawakita F, Kanamaru H, Asada R, Suzuki H. Potential roles of matricellular proteins in stroke. Exp Neurol 2019; 322:113057. [DOI: 10.1016/j.expneurol.2019.113057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/26/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022]
|
5
|
Yang Y, Wu QH, Li Y, Gao PJ. Association of SLRPs with carotid artery atherosclerosis in essential hypertensive patients. J Hum Hypertens 2018; 32:564-571. [DOI: 10.1038/s41371-018-0077-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 01/26/2023]
|
6
|
Garro A, Chodobski A, Szmydynger-Chodobska J, Shan R, Bialo SR, Bennett J, Quayle K, Rewers A, Schunk JE, Casper TC, Kuppermann N, Glaser N. Circulating matrix metalloproteinases in children with diabetic ketoacidosis. Pediatr Diabetes 2017; 18:95-102. [PMID: 26843101 PMCID: PMC4974171 DOI: 10.1111/pedi.12359] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Matrix metalloproteinases (MMPs) mediate blood-brain barrier dysfunction in inflammatory disease states. Our objective was to compare circulating MMPs in children with diabetic ketoacidosis (DKA) to children with type 1 diabetes mellitus without DKA. RESEARCH DESIGN AND METHODS This was a prospective study performed at five tertiary-care pediatric hospitals. We measured plasma MMP-2, MMP-3, and MMP-9 early during DKA (time 1; within 2 h of beginning intravenous fluids) and during therapy (time 2; median 8 h; range: 4-16 h). The primary outcome was MMP levels in 34 children with DKA vs. 23 children with type 1 diabetes without DKA. Secondary outcomes included correlations between MMPs and measures of DKA severity. RESULTS In children with DKA compared with diabetes controls, circulating MMP-2 levels were lower (mean 77 vs. 244 ng/mL, p < 0.001), MMP-3 levels were similar (mean 5 vs. 4 ng/mL, p = 0.57), and MMP-9 levels were higher (mean 67 vs. 25 ng/mL, p = 0.002) early in DKA treatment. MMP-2 levels were correlated with pH at time 1 (r = 0.45, p = 0.018) and time 2 (r = 0.47, p = 0.015) and with initial serum bicarbonate at time 2 (r = 0.5, p = 0.008). MMP-9 levels correlated with hemoglobin A1c in DKA and diabetes controls, but remained significantly elevated in DKA after controlling for hemoglobin A1c (β = -31.3, p = 0.04). CONCLUSIONS Circulating MMP-2 levels are lower and MMP-9 levels are higher in children during DKA compared with levels in children with diabetes without DKA. Alterations in MMP expression could mediate BBB dysfunction occurring during DKA.
Collapse
Affiliation(s)
- Aris Garro
- Departments of Pediatrics and Emergency Medicine, Rhode Island Hospital, Providence, RI, USA,Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Adam Chodobski
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | | | - Rongzi Shan
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Shara R Bialo
- Departments of Pediatrics and Emergency Medicine, Rhode Island Hospital, Providence, RI, USA,Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Jonathan Bennett
- Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Wilmington, DE, USA
| | - Kimberly Quayle
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Arleta Rewers
- Department of Pediatrics, University of Colorado, School of Medicine, Denver, CO, USA
| | - Jeffrey E Schunk
- Department of Pediatrics, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - T Charles Casper
- Department of Pediatrics, University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Nathan Kuppermann
- Department of Emergency Medicine, University of California Davis, Davis, CA, USA
| | - Nicole Glaser
- Department of Pediatrics, University of California Davis, Davis, CA, USA
| | | |
Collapse
|
7
|
Kunnas T, Solakivi T, Määttä K, Nikkari ST. Decorin Genotypes, Serum Glucose, Heart Rate, and Cerebrovascular Events: The Tampere Adult Population Cardiovascular Risk Study. Genet Test Mol Biomarkers 2016; 20:416-9. [DOI: 10.1089/gtmb.2016.0049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Tarja Kunnas
- Department of Medical Biochemistry, University of Tampere Medical School and Fimlab Laboratories, Tampere, Finland
| | - Tiina Solakivi
- Department of Medical Biochemistry, University of Tampere Medical School and Fimlab Laboratories, Tampere, Finland
| | - Kirsi Määttä
- Department of Medical Biochemistry, University of Tampere Medical School and Fimlab Laboratories, Tampere, Finland
| | - Seppo T. Nikkari
- Department of Medical Biochemistry, University of Tampere Medical School and Fimlab Laboratories, Tampere, Finland
| |
Collapse
|
8
|
Yin Y, Wan J, Li P, Jia Y, Sun R, Pan G, Wan G. Protective effect of Xin Mai Jia ultrafiltration extract on human umbilical vein endothelial cell injury induced by hydrogen peroxide and the effect on the NO-cGMP signaling pathway. Exp Ther Med 2014; 8:38-48. [PMID: 24944594 PMCID: PMC4061210 DOI: 10.3892/etm.2014.1700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 03/25/2014] [Indexed: 12/21/2022] Open
Abstract
The aim of the present study was to evaluate the protective effect of the ultrafiltration extract of Xin Mai Jia (XMJ) on a human umbilical vein endothelial cell (HUVEC) injury model induced by hydrogen peroxide (H2O2), by providing experimental data to investigate the mechanism and efficacy underlying the therapeutic effects on atherosclerosis. HUVECs were first injured by H2O2 and then varying final concentrations of the Chinese herb extract were added. Effects of the XMJ extract on morphology, activity, monolayer permeability, biochemical indicators, cytokines, endothelial nitric oxide synthase (eNOS) protein content and eNOS gene expression in the HUVECs were analyzed. H2O2 significantly promoted HUVEC injury. The XMJ ultrafiltration extract significantly improved the morphological changes in the injured HUVECs. In addition, XMJ treatment increased cell activity and decreased monolayer permeability. The expression levels of intracellular adhesion molecule-1, vascular adhesion molecule-1, interleukin-1 and -6 and nuclear factor-κB decreased, while the expression levels of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 increased with XMJ administration. Increased levels of nitric oxide (NO), eNOS protein and eNOS gene expression were also observed. Therefore, the XMJ ultrafiltration extract exhibits marked anti-inflammatory effects and antioxidant abilities. These properties significantly inhibited the H2O2-induced injury of HUVECs, which may be associated with the NO-cyclic guanosine monophosphate signaling pathway.
Collapse
Affiliation(s)
- Yaling Yin
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Jia Wan
- Department of Nephrology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yanlong Jia
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Ruili Sun
- Department of Inspection, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Guopin Pan
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Guangrui Wan
- Modern Technology Education Center, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|