1
|
Ihadadene K, Fallatah AHA, Zhu Y, Tolone A, Paquet‐Durand F. Inhibition of cGMP-Signalling Rescues Retinal Ganglion Cells From Axotomy-Induced Degeneration. J Neurochem 2025; 169:e70072. [PMID: 40270249 PMCID: PMC12019586 DOI: 10.1111/jnc.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/25/2025]
Abstract
The axons of retinal ganglion cells (RGCs) form the optic nerve, which relays visual information to the brain. RGC degeneration is the root cause of a variety of blinding diseases linked to optic nerve damage, including glaucoma, the second leading cause of blindness worldwide. The underlying cellular mechanisms of RGC degeneration are largely unclear; yet, they have been connected to excessive production of the signalling molecule nitric oxide (NO) by nitric oxide synthase (NOS). NO activates soluble guanylate cyclase (sGC), which subsequently produces the second messenger cyclic guanosine monophosphate (cGMP). This, in turn, activates protein kinase G (PKG), which can phosphorylate downstream protein targets. To study the role of NO/cGMP/PKG signalling in RGC degeneration, we used organotypic retinal explant cultures in which the optic nerve had been severed. We assessed the activity of NOS, RGC death and survival at different times after optic nerve transection. While NOS activity was high right after optic nerve transection, significant RGC loss occurred with a 24-48-h delay. We then treated retinal explants with inhibitors selectively targeting either NOS, sGC, PKG, or Kv1.3 and Kv1.6 voltage-gated potassium channels. While all four treatments reduced RGC death, the PKG inhibitor CN238 and the Kv-channel blocker Margatoxin (MrgX) showed the most pronounced rescue effects. Our results confirm an involvement of NO/cGMP/PKG signalling in RGC degeneration, highlight the potential of PKG and Kv1-channel targeting drugs for treatment development, and further suggest organotypic retinal explant cultures as a useful model for investigations into optic nerve damage.
Collapse
Affiliation(s)
- Katia Ihadadene
- Graduate School INTHERAPIBurgundy UniversityDijonFrance
- Institute for Ophthalmic ResearchUniversity of TübingenTübingenGermany
| | - Azdah Hamed A Fallatah
- Institute for Ophthalmic ResearchUniversity of TübingenTübingenGermany
- Graduate School for Molecular MedicineUniversity of TübingenTübingenGermany
- Graduate School for Cellular and Molecular NeuroscienceUniversity of TübingenTübingenGermany
| | - Yu Zhu
- Institute for Ophthalmic ResearchUniversity of TübingenTübingenGermany
- Graduate School for Cellular and Molecular NeuroscienceUniversity of TübingenTübingenGermany
| | - Arianna Tolone
- Institute for Ophthalmic ResearchUniversity of TübingenTübingenGermany
| | | |
Collapse
|
2
|
Zhang S, Yang Y, Chen J, Su S, Cai Y, Yang X, Sang A. Integrating Multi-omics to Identify Age-Related Macular Degeneration Subtypes and Biomarkers. J Mol Neurosci 2024; 74:74. [PMID: 39107525 PMCID: PMC11303511 DOI: 10.1007/s12031-024-02249-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024]
Abstract
Age-related macular degeneration (AMD) is one of the most common causes of irreversible vision loss in the elderly. Its pathogenesis is likely multifactorial, involving a complex interaction of metabolic and environmental factors, and remains poorly understood. Previous studies have shown that mitochondrial dysfunction and oxidative stress play a crucial role in the development of AMD. Oxidative damage to the retinal pigment epithelium (RPE) has been identified as one of the major mediators in the pathogenesis of age-related macular degeneration (AMD). Therefore, this article combines transcriptome sequencing (RNA-seq) and single-cell sequencing (scRNA-seq) data to explore the role of mitochondria-related genes (MRGs) in AMD. Firstly, differential expression analysis was performed on the raw RNA-seq data. The intersection of differentially expressed genes (DEGs) and MRGs was performed. This paper proposes a deep subspace nonnegative matrix factorization (DS-NMF) algorithm to perform a multi-layer nonlinear transformation on the intersection of gene expression profiles corresponding to AMD samples. The age of AMD patients is used as prior information at the network's top level to change the data distribution. The classification is based on reconstructed data with altered distribution. The types obtained significantly differ in scores of multiple immune-related pathways and immune cell infiltration abundance. Secondly, an optimal AMD diagnosis model was constructed using multiple machine learning algorithms for external and qRT-PCR verification. Finally, ten potential therapeutic drugs for AMD were identified based on cMAP analysis. The AMD subtypes identified in this article and the diagnostic model constructed can provide a reference for treating AMD and discovering new drug targets.
Collapse
Affiliation(s)
- Shenglai Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ying Yang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jia Chen
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Shu Su
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yu Cai
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaowei Yang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Aimin Sang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
3
|
Bitard J, Grellier EK, Lourdel S, Filipe HP, Hamon A, Fenaille F, Castelli FA, Chu-Van E, Roger JE, Locker M, Perron M. Uveitic glaucoma-like features in Yap conditional knockout mice. Cell Death Discov 2024; 10:48. [PMID: 38272861 PMCID: PMC10811226 DOI: 10.1038/s41420-023-01791-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Glaucoma is a multifactorial neurodegenerative disease characterized by the progressive and irreversible degeneration of the optic nerve and retinal ganglion cells. Despite medical advances aiming at slowing degeneration, around 40% of treated glaucomatous patients will undergo vision loss. It is thus of utmost importance to have a better understanding of the disease and to investigate more deeply its early causes. The transcriptional coactivator YAP, an important regulator of eye homeostasis, has recently drawn attention in the glaucoma research field. Here we show that Yap conditional knockout mice (Yap cKO), in which the deletion of Yap is induced in both Müller glia (i.e. the only retinal YAP-expressing cells) and the non-pigmented epithelial cells of the ciliary body, exhibit a breakdown of the aqueous-blood barrier, accompanied by a progressive collapse of the ciliary body. A similar phenotype is observed in human samples that we obtained from patients presenting with uveitis. In addition, aged Yap cKO mice harbor glaucoma-like features, including deregulation of key homeostatic Müller-derived proteins, retinal vascular defects, optic nerve degeneration and retinal ganglion cell death. Finally, transcriptomic analysis of Yap cKO retinas pointed to early-deregulated genes involved in extracellular matrix organization potentially underlying the onset and/or progression of the observed phenotype. Together, our findings reveal the essential role of YAP in preserving the integrity of the ciliary body and retinal ganglion cells, thereby preventing the onset of uveitic glaucoma-like features.
Collapse
Affiliation(s)
- Juliette Bitard
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France.
| | - Elodie-Kim Grellier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Sophie Lourdel
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Helena Prior Filipe
- West Lisbon Hospitals Center, Hospital de Egas Moniz, Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research, Lisbon, Portugal
| | - Annaïg Hamon
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Gif sur Yvette, France
| | - Florence Anne Castelli
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Gif sur Yvette, France
| | - Emeline Chu-Van
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Gif sur Yvette, France
| | - Jérôme E Roger
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Morgane Locker
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Muriel Perron
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France.
| |
Collapse
|
4
|
Agarwal D, Dash N, Mazo KW, Chopra M, Avila MP, Patel A, Wong RM, Jia C, Do H, Cheng J, Chiang C, Jurlina SL, Roshan M, Perry MW, Rho JM, Broyer R, Lee CD, Weinreb RN, Gavrilovici C, Oesch NW, Welsbie DS, Wahlin KJ. Human retinal ganglion cell neurons generated by synchronous BMP inhibition and transcription factor mediated reprogramming. NPJ Regen Med 2023; 8:55. [PMID: 37773257 PMCID: PMC10541876 DOI: 10.1038/s41536-023-00327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/31/2023] [Indexed: 10/01/2023] Open
Abstract
In optic neuropathies, including glaucoma, retinal ganglion cells (RGCs) die. Cell transplantation and endogenous regeneration offer strategies for retinal repair, however, developmental programs required for this to succeed are incompletely understood. To address this, we explored cellular reprogramming with transcription factor (TF) regulators of RGC development which were integrated into human pluripotent stem cells (PSCs) as inducible gene cassettes. When the pioneer factor NEUROG2 was combined with RGC-expressed TFs (ATOH7, ISL1, and POU4F2) some conversion was observed and when pre-patterned by BMP inhibition, RGC-like induced neurons (RGC-iNs) were generated with high efficiency in just under a week. These exhibited transcriptional profiles that were reminiscent of RGCs and exhibited electrophysiological properties, including AMPA-mediated synaptic transmission. Additionally, we demonstrated that small molecule inhibitors of DLK/LZK and GCK-IV can block neuronal death in two pharmacological axon injury models. Combining developmental patterning with RGC-specific TFs thus provided valuable insight into strategies for cell replacement and neuroprotection.
Collapse
Affiliation(s)
- Devansh Agarwal
- Shu Chien-Gene Lay Department of Bioengineering, UC San Diego, La Jolla, CA, USA
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Nicholas Dash
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Kevin W Mazo
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Manan Chopra
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Maria P Avila
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Amit Patel
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Ryan M Wong
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Cairang Jia
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Hope Do
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Jie Cheng
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Colette Chiang
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Shawna L Jurlina
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Mona Roshan
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Michael W Perry
- Department of Biological Sciences, UC San Diego, La Jolla, CA, USA
| | - Jong M Rho
- Department of Neurosciences, UC San Diego, La Jolla, CA, USA
| | - Risa Broyer
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Cassidy D Lee
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Robert N Weinreb
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | | | - Nicholas W Oesch
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
- Department of Psychology, UC San Diego, La Jolla, CA, USA
| | - Derek S Welsbie
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA
| | - Karl J Wahlin
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Gong J, Gong Y, Zou T, Zeng Y, Yang C, Mo L, Kang J, Fan X, Xu H, Yang J. A controllable perfusion microfluidic chip for facilitating the development of retinal ganglion cells in human retinal organoids. LAB ON A CHIP 2023; 23:3820-3836. [PMID: 37496497 DOI: 10.1039/d3lc00054k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Retinal organoids (ROs) derived from human pluripotent stem cells (hPSCs) have become a promising model in vitro to recapitulate human retinal development, which can be further employed to explore the mechanisms of retinal diseases. However, the current culture systems for ROs lack physiologically relevant microenvironments, such as controllable mechano-physiological cues and dynamic feedback between cells and the extracellular matrix (ECM), which limits the accurate control of RO development. Therefore, we designed a controllable perfusion microfluidic chip (CPMC) with the advantages of precisely controlling fluidic shear stress (FSS) and oxygen concentration distribution in a human embryonic stem cell (hESC)-derived RO culture system. We found that ROs cultured under this system allow for expanding the retinal progenitor cell (RPC) pool, orchestrating the retinal ganglion cell (RGC) specification, and axon growth without disturbing the spatial and temporal patterning events at the early stage of RO development. Furthermore, RNA sequencing data revealed that the activation of voltage-gated ion channels and the increased expression of ECM components synergistically improve the growth of ROs and facilitate the differentiation of RGCs. This study elaborates on the advantages of the designed CPMC to promote RO growth and provide a controllable and reliable platform for the efficient maturity of RGCs in the ROs, promising applications in modeling RGC-related disorders, drug screening, and cell transplantation.
Collapse
Affiliation(s)
- Jing Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| | - Yu Gong
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| | - Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| | - Yuxiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| | - Cao Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| | - Lingyue Mo
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| | - Jiahui Kang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 40038, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
6
|
Dumanska H, Telka M, Veselovsky N. Inhibition of high-voltage-activated calcium currents by acute hypoxia in cultured retinal ganglion cells. Front Cell Neurosci 2023; 17:1202083. [PMID: 37465211 PMCID: PMC10351036 DOI: 10.3389/fncel.2023.1202083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/08/2023] [Indexed: 07/20/2023] Open
Abstract
Hypoxia is a common factor of numerous ocular diseases that lead to dysfunctions and loss of retinal ganglion cells (RGCs) with subsequent vision loss. High-voltage-activated calcium channels are the main source of calcium entry into neurons. Their activity plays a central role in different signaling processes in health and diseases, such as enzyme activation, gene transcription, synaptic transmission, or the onset of cell death. This study aims to establish and evaluate the initial effect of the early stage of acute hypoxia on somatic HVA calcium currents in cultured RGCs. HVA calcium currents were recorded in RGCs using the whole-cell patch-clamp technique in the voltage-clamp mode. The fast local superfusion was used for a brief (up to 270 s) application of the hypoxic solution (pO2 < 5 mmHg). The switch from normoxic to hypoxic solutions and vice versa was less than 1 s. The HVA calcium channel activity was inhibited by acute hypoxia in 79% of RGCs (30 of 38 RGCs) in a strong voltage-dependent manner. The level of inhibition was independent of the duration of hypoxia or repeated applications. The hypoxia-induced inhibition of calcium currents had a strong correlation with the duration of hypoxia and showed the transition from reversible to irreversible at 75 s of hypoxia and longer. The results obtained are the first demonstration of the phenomena of HVA calcium current inhibition by acute hypoxia in RGCs and provide a conceptual framework for further research.
Collapse
|
7
|
Boal AM, McGrady NR, Risner ML, Calkins DJ. Sensitivity to extracellular potassium underlies type-intrinsic differences in retinal ganglion cell excitability. Front Cell Neurosci 2022; 16:966425. [PMID: 35990894 PMCID: PMC9390602 DOI: 10.3389/fncel.2022.966425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Neuronal type-specific physiologic heterogeneity can be driven by both extrinsic and intrinsic mechanisms. In retinal ganglion cells (RGCs), which carry visual information from the retina to central targets, evidence suggests intrinsic properties shaping action potential (AP) generation significantly impact the responses of RGCs to visual stimuli. Here, we explored how differences in intrinsic excitability further distinguish two RCG types with distinct presynaptic circuits, alpha ON-sustained (αON-S) cells and alpha OFF-sustained (αOFF-S) cells. We found that αOFF-S RGCs are more excitable to modest depolarizing currents than αON-S RGCs but excitability plateaued earlier as depolarization increased (i.e., depolarization block). In addition to differences in depolarization block sensitivity, the two cell types also produced distinct AP shapes with increasing stimulation. αOFF-S AP width and variability increased with depolarization magnitude, which correlated with the onset of depolarization block, while αON-S AP width and variability remained stable. We then tested if differences in depolarization block observed in αON-S and αOFF-S RGCs were due to sensitivity to extracellular potassium. We found αOFF-S RGCs more sensitive to increased extracellular potassium concentration, which shifted αON-S RGC excitability to that of αOFF-S cells under baseline potassium conditions. Finally, we investigated the influence of the axon initial segment (AIS) dimensions on RGC spiking. We found that the relationship between AIS length and evoked spike rate varied not only by cell type, but also by the strength of stimulation, suggesting AIS structure alone cannot fully explain the observed differences RGC excitability. Thus, sensitivity to extracellular potassium contributes to differences in intrinsic excitability, a key factor that shapes how RGCs encode visual information.
Collapse
|
8
|
Influence of Trace Elements on Neurodegenerative Diseases of The Eye-The Glaucoma Model. Int J Mol Sci 2021; 22:ijms22094323. [PMID: 33919241 PMCID: PMC8122456 DOI: 10.3390/ijms22094323] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is a heterogeneous group of chronic neurodegenerative disorders characterized by a relatively selective, progressive damage to the retinal ganglion cells (RGCs) and their axons, which leads to axon loss and visual field alterations. To date, many studies have shown the role of various elements, mainly metals, in maintaining the balance of prooxidative and antioxidative processes, regulation of fluid and ion flow through cell membranes of the ocular tissues. Based on the earlier and current research results, their relationship with the development and progression of glaucoma seems obvious and is increasingly appreciated. In this review, we aimed to summarize the current evidence on the role of trace elements in the pathogenesis and prevention of glaucomatous diseases. Special attention is also paid to the genetic background associated with glaucoma-related abnormalities of physiological processes that regulate or involve the ions of elements considered as trace elements necessary for the functioning of the cells.
Collapse
|
9
|
Sergeeva EG, Rosenberg PA, Benowitz LI. Non-Cell-Autonomous Regulation of Optic Nerve Regeneration by Amacrine Cells. Front Cell Neurosci 2021; 15:666798. [PMID: 33935656 PMCID: PMC8085350 DOI: 10.3389/fncel.2021.666798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/19/2021] [Indexed: 11/13/2022] Open
Abstract
Visual information is conveyed from the eye to the brain through the axons of retinal ganglion cells (RGCs) that course through the optic nerve and synapse onto neurons in multiple subcortical visual relay areas. RGCs cannot regenerate their axons once they are damaged, similar to most mature neurons in the central nervous system (CNS), and soon undergo cell death. These phenomena of neurodegeneration and regenerative failure are widely viewed as being determined by cell-intrinsic mechanisms within RGCs or to be influenced by the extracellular environment, including glial or inflammatory cells. However, a new concept is emerging that the death or survival of RGCs and their ability to regenerate axons are also influenced by the complex circuitry of the retina and that the activation of a multicellular signaling cascade involving changes in inhibitory interneurons - the amacrine cells (AC) - contributes to the fate of RGCs. Here, we review our current understanding of the role that interneurons play in cell survival and axon regeneration after optic nerve injury.
Collapse
Affiliation(s)
- Elena G. Sergeeva
- Department of Neurology, Boston Children’s Hospital, Boston, MA, United States
- Kirby Center for Neuroscience, Boston Children’s Hospital, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Paul A. Rosenberg
- Department of Neurology, Boston Children’s Hospital, Boston, MA, United States
- Kirby Center for Neuroscience, Boston Children’s Hospital, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Larry I. Benowitz
- Kirby Center for Neuroscience, Boston Children’s Hospital, Boston, MA, United States
- Laboratories for Neuroscience Research in Neurosurgery, Boston Children’s Hospital, Boston, MA, United States
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA, United States
- Department of Neurosurgery, Harvard Medical School, Boston, MA, United States
- Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
New Omics-Derived Perspectives on Retinal Dystrophies: Could Ion Channels-Encoding or Related Genes Act as Modifier of Pathological Phenotype? Int J Mol Sci 2020; 22:ijms22010070. [PMID: 33374679 PMCID: PMC7793472 DOI: 10.3390/ijms22010070] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
Ion channels are membrane-spanning integral proteins expressed in multiple organs, including the eye. Here, ion channels play a role in several physiological processes, like signal transmission and visual processing. A wide range of mutations have been reported in the corresponding genes and their interacting subunit coding genes, which contribute significantly to a wide spectrum of ocular diseases collectively called channelopathies, a subgroup of inherited retinal dystrophies. Such mutations result in either a loss or gain-of channel functions affecting the structure, assembly, trafficking and localization of channel proteins. We investigated the probands of seven Italian and Egyptian families affected by not completely defined forms of inherited retinal dystrophies, by whole exome sequencing (WES) experiments, and found interesting variants in already known causative genes probably able to impair retinal functionalities. However, because such variants did not completely explain the phenotype manifested by each patient, we proceed to further investigate possible related genes carrying mutations that might complement previously found data, based on the common aspect linked to neurotransmission impairments. We found 10 mutated genes whose variants might alter important ligand binding sites differently distributed through all considered patients. Such genes encode for ion channels, or their regulatory proteins, and strictly interact with known causative genes, also sharing with them synaptic-related pathways. Taking into account several limitations that will be resolved by further experiments, we believe that our exploratory investigation will help scientists to provide a new promising paradigm for precise diagnosis of retinal dystrophies to facilitate the development of rational treatments.
Collapse
|
11
|
Sensing through Non-Sensing Ocular Ion Channels. Int J Mol Sci 2020; 21:ijms21186925. [PMID: 32967234 PMCID: PMC7554890 DOI: 10.3390/ijms21186925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Ion channels are membrane-spanning integral proteins expressed in multiple organs, including the eye. In the eye, ion channels are involved in various physiological processes, like signal transmission and visual processing. A wide range of mutations have been reported in the corresponding genes and their interacting subunit coding genes, which contribute significantly to an array of blindness, termed ocular channelopathies. These mutations result in either a loss- or gain-of channel functions affecting the structure, assembly, trafficking, and localization of channel proteins. A dominant-negative effect is caused in a few channels formed by the assembly of several subunits that exist as homo- or heteromeric proteins. Here, we review the role of different mutations in switching a “sensing” ion channel to “non-sensing,” leading to ocular channelopathies like Leber’s congenital amaurosis 16 (LCA16), cone dystrophy, congenital stationary night blindness (CSNB), achromatopsia, bestrophinopathies, retinitis pigmentosa, etc. We also discuss the various in vitro and in vivo disease models available to investigate the impact of mutations on channel properties, to dissect the disease mechanism, and understand the pathophysiology. Innovating the potential pharmacological and therapeutic approaches and their efficient delivery to the eye for reversing a “non-sensing” channel to “sensing” would be life-changing.
Collapse
|
12
|
Ahn J, Phan HL, Cha S, Koo KI, Yoo Y, Goo YS. Synchrony of Spontaneous Burst Firing between Retinal Ganglion Cells Across Species. Exp Neurobiol 2020; 29:285-299. [PMID: 32921641 PMCID: PMC7492847 DOI: 10.5607/en20025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 01/16/2023] Open
Abstract
Neurons communicate with other neurons in response to environmental changes. Their goal is to transmit information to their targets reliably. A burst, which consists of multiple spikes within a short time interval, plays an essential role in enhancing the reliability of information transmission through synapses. In the visual system, retinal ganglion cells (RGCs), the output neurons of the retina, show bursting activity and transmit retinal information to the lateral geniculate neuron of the thalamus. In this study, to extend our interest to the population level, the burstings of multiple RGCs were simultaneously recorded using a multi-channel recording system. As the first step in network analysis, we focused on investigating the pairwise burst correlation between two RGCs. Furthermore, to assess if the population bursting is preserved across species, we compared the synchronized bursting of RGCs between marmoset monkey (callithrix jacchus), one species of the new world monkeys and mouse (C57BL/6J strain). First, monkey RGCs showed a larger number of spikes within a burst, while the inter-spike interval, burst duration, and inter-burst interval were smaller compared with mouse RGCs. Monkey RGCs showed a strong burst synchronization between RGCs, whereas mouse RGCs showed no correlated burst firing. Monkey RGC pairs showed significantly higher burst synchrony and mutual information than mouse RGC pairs did. Comprehensively, through this study, we emphasize that two species have a different bursting activity of RGCs and different burst synchronization suggesting two species have distinctive retinal processing.
Collapse
Affiliation(s)
- Jungryul Ahn
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| | - Huu Lam Phan
- Department of Biomedical Engineering, University of Ulsan, Ulsan 44610, Korea
| | - Seongkwang Cha
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| | - Kyo-In Koo
- Department of Biomedical Engineering, University of Ulsan, Ulsan 44610, Korea
| | - Yongseok Yoo
- Department of Electronics Engineering, Incheon National University, Incheon 22012, Korea
| | - Yong Sook Goo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| |
Collapse
|
13
|
Hamed SA. Ocular dysfunctions and toxicities induced by antiepileptic medications: Types, pathogenic mechanisms, and treatment strategies. Expert Rev Clin Pharmacol 2019; 12:309-328. [PMID: 30840840 DOI: 10.1080/17512433.2019.1591274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/04/2019] [Indexed: 01/18/2023]
Abstract
Ocular dysfunctions and toxicities induced by antiepileptic drugs (AEDs) are rarely reviewed and not frequently received attention by treating physicians compared to other adverse effects (e.g. endocrinologic, cognitive and metabolic). However, some are frequent and progressive even in therapeutic concentrations or result in permanent blindness. Although some adverse effects are non-specific, others are related to the specific pharmacodynamics of the drug. Areas covered: This review was written after detailed search in PubMed, EMBASE, ISI web, SciELO, Scopus, and Cochrane Central Register databases (from 1970 to 2019). It summarized the reported ophthalmologic adverse effects of the currently available AEDs; their risks and possible pathogenic mechanisms. They include ocular motility dysfunctions, retinopathy, maculopathy, glaucoma, myopia, optic neuropathy, and impaired retinal vascular autoregulation. In general, ophthalmo-neuro- or retino-toxic adverse effects of AEDs are classified as type A (dose-dependent), type B (host-dependent or idiosyncratic) or type C which is due to the cumulative effect from long-term use. Expert opinion: Ocular adverse effects of AEDs are rarely reviewed although some are frequent or may result in permanent blindness. Increasing knowledge of their incidence and improving understanding of their risks and pathogenic mechanisms are crucial for monitoring, prevention, and management of patients' at risk.
Collapse
Affiliation(s)
- Sherifa A Hamed
- a Department of Neurology and Psychiatry , Assiut University Hospital , Assiut , Egypt
| |
Collapse
|
14
|
Cui P, Li XY, Zhao Y, Li Q, Gao F, Li LZ, Yin N, Sun XH, Wang Z. Activation of dopamine D1 receptors enhances the temporal summation and excitability of rat retinal ganglion cells. Neuroscience 2017; 355:71-83. [DOI: 10.1016/j.neuroscience.2017.04.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/24/2017] [Accepted: 04/30/2017] [Indexed: 01/11/2023]
|
15
|
Sang A, Yang X, Chen H, Qin B, Zhu M, Dai M, Zhu R, Liu X. Upregulation of SYF2 Relates to Retinal Ganglion Cell Apoptosis and Retinal Glia Cell Proliferation After Light-Induced Retinal Damage. J Mol Neurosci 2015; 56:480-90. [DOI: 10.1007/s12031-015-0534-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/19/2015] [Indexed: 12/21/2022]
|
16
|
Li N, Li Y, Duan X. Heat shock protein 72 confers protection in retinal ganglion cells and lateral geniculate nucleus neurons via blockade of the SAPK/JNK pathway in a chronic ocular-hypertensive rat model. Neural Regen Res 2014; 9:1395-401. [PMID: 25221598 PMCID: PMC4160872 DOI: 10.4103/1673-5374.137595] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2014] [Indexed: 01/03/2023] Open
Abstract
Optic nerve transection increased the expression of heat shock protein 72 (HSP72) in the lateral geniculate body, indicating that this protein is involved in the prevention of neuronal injury. Zinc sulfate and quercetin induced and inhibited the expression of HSP72, respectively. Intraperitoneal injections of zinc sulfate, SP600125 (c-Jun N-terminal kinase inhibitor), or quercetin were performed on retinal ganglion cells in a Wistar rat model of chronic ocular hypertension. Our results showed that compared with the control group, the expression of HSP72 in retinal ganglion cells and the lateral geniculate body was increased after the injection of zinc sulfate, but was decreased after the injection of quercetin. The expression of phosphorylated c-Jun N-terminal kinases and phosphorylated c-Jun were visible 3 days after injection in the control group, and reached a peak at 7 days. Zinc sulfate and SP600125 significantly decreased the expression of p-c-Jun, whereas quercetin significantly enhanced the expression of this protein. These results suggest that HSP72 protects retinal ganglion cells and lateral geniculate body in a rat model of chronic ocular hypertension from injury by blocking the activation of the stress-activated kinase/c-Jun N-terminal kinase apoptotic pathway.
Collapse
Affiliation(s)
- Ning Li
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yuehua Li
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xuanchu Duan
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
17
|
ProBLM web server: protein and membrane placement and orientation package. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2014; 2014:838259. [PMID: 25126110 PMCID: PMC4122144 DOI: 10.1155/2014/838259] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/28/2014] [Accepted: 07/01/2014] [Indexed: 01/08/2023]
Abstract
The 3D structures of membrane proteins are typically determined without the presence of a lipid bilayer. For the purpose of studying the role of membranes on the wild type characteristics of the corresponding protein, determining the position and orientation of transmembrane proteins within a membrane environment is highly desirable. Here we report a geometry-based approach to automatically insert a membrane protein with a known 3D structure into pregenerated lipid bilayer membranes with various dimensions and lipid compositions or into a pseudomembrane. The pseudomembrane is built using the Protein Nano-Object Integrator which generates a parallelepiped of user-specified dimensions made up of pseudoatoms. The pseudomembrane allows for modeling the desolvation effects while avoiding plausible errors associated with wrongly assigned protein-lipid contacts. The method is implemented into a web server, the ProBLM server, which is freely available to the biophysical community. The web server allows the user to upload a protein coordinate file and any missing residues or heavy atoms are regenerated. ProBLM then creates a combined protein-membrane complex from the given membrane protein and bilayer lipid membrane or pseudomembrane. The user is given an option to manually refine the model by manipulating the position and orientation of the protein with respect to the membrane.
Collapse
|