1
|
Ren R, Xiong C, Ma R, Wang Y, Yue T, Yu J, Shao B. The recent progress of myeloid-derived suppressor cell and its targeted therapies in cancers. MedComm (Beijing) 2023; 4:e323. [PMID: 37547175 PMCID: PMC10397484 DOI: 10.1002/mco2.323] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 08/08/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are an immature group of myeloid-derived cells generated from myeloid cell precursors in the bone marrow. MDSCs appear almost exclusively in pathological conditions, such as tumor progression and various inflammatory diseases. The leading function of MDSCs is their immunosuppressive ability, which plays a crucial role in tumor progression and metastasis through their immunosuppressive effects. Since MDSCs have specific molecular features, and only a tiny amount exists in physiological conditions, MDSC-targeted therapy has become a promising research direction for tumor treatment with minimal side effects. In this review, we briefly introduce the classification, generation and maturation process, and features of MDSCs, and detail their functions under various circumstances. The present review specifically demonstrates the environmental specificity of MDSCs, highlighting the differences between MDSCs from cancer and healthy individuals, as well as tumor-infiltrating MDSCs and circulating MDSCs. Then, we further describe recent advances in MDSC-targeted therapies. The existing and potential targeted drugs are divided into three categories, monoclonal antibodies, small-molecular inhibitors, and peptides. Their targeting mechanisms and characteristics have been summarized respectively. We believe that a comprehensive in-depth understanding of MDSC-targeted therapy could provide more possibilities for the treatment of cancer.
Collapse
Affiliation(s)
- Ruiyang Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Chenyi Xiong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Runyu Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yixuan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Tianyang Yue
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Jiayun Yu
- Department of RadiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Bin Shao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
- State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
2
|
Lim J, Lee A, Lee HG, Lim JS. Modulation of Immunosuppression by Oligonucleotide-Based Molecules and Small Molecules Targeting Myeloid-Derived Suppressor Cells. Biomol Ther (Seoul) 2020; 28:1-17. [PMID: 31431006 PMCID: PMC6939693 DOI: 10.4062/biomolther.2019.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that exert suppressive function on the immune response. MDSCs expand in tumor-bearing hosts or in the tumor microenvironment and suppress T cell responses via various mechanisms, whereas a reduction in their activities has been observed in autoimmune diseases or infections. It has been reported that the symptoms of various diseases, including malignant tumors, can be alleviated by targeting MDSCs. Moreover, MDSCs can contribute to patient resistance to therapy using immune checkpoint inhibitors. In line with these therapeutic approaches, diverse oligonucleotide-based molecules and small molecules have been evaluated for their therapeutic efficacy in several disease models via the modulation of MDSC activity. In the current review, MDSC-targeting oligonucleotides and small molecules are briefly summarized, and we highlight the immunomodulatory effects on MDSCs in a variety of disease models and the application of MDSC-targeting molecules for immuno-oncologic therapy.
Collapse
Affiliation(s)
- Jihyun Lim
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Aram Lee
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Hee Gu Lee
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jong-Seok Lim
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea.,Cellular Heterogeneity Research Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
3
|
Koster BD, de Jong TD, van den Hout MFCM, Sluijter BJR, Vuylsteke RJCLM, Molenkamp BG, Vosslamber S, van den Tol MP, van den Eertwegh AJM, de Gruijl TD. In the mix: the potential benefits of adding GM-CSF to CpG-B in the local treatment of patients with early-stage melanoma. Oncoimmunology 2019; 9:1708066. [PMID: 32002303 PMCID: PMC6959435 DOI: 10.1080/2162402x.2019.1708066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 12/11/2022] Open
Abstract
Whereas TLR9 agonists are recognized as powerful stimulators of antitumor immunity, GM-CSF has had mixed reviews. In previously reported randomized trials we assessed the effects of local immune modulation in early-stage melanoma with CpG-B alone or with GM-CSF. Here we discuss the added value of GM-CSF and show sex-related differences.
Collapse
Affiliation(s)
- Bas D Koster
- Departments of Medical Oncology, Amsterdam UMC, Vrije Universiteit, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Tamarah D de Jong
- Departments of Rheumatology, Amsterdam UMC, Vrije Universiteit, Amsterdam Rheumatology and Immunology Center, Amsterdam, the Netherlands
| | - Mari F C M van den Hout
- Departments of Pathology, Amsterdam UMC, Vrije Universiteit, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Berbel J R Sluijter
- Departments of Surgical Oncology, Amsterdam UMC, Vrije Universiteit, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Ronald J C L M Vuylsteke
- Departments of Surgical Oncology, Amsterdam UMC, Vrije Universiteit, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Barbara G Molenkamp
- Departments of Surgical Oncology, Amsterdam UMC, Vrije Universiteit, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Saskia Vosslamber
- Departments of Rheumatology, Amsterdam UMC, Vrije Universiteit, Amsterdam Rheumatology and Immunology Center, Amsterdam, the Netherlands
| | - M Petrousjka van den Tol
- Departments of Surgical Oncology, Amsterdam UMC, Vrije Universiteit, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Alfons J M van den Eertwegh
- Departments of Medical Oncology, Amsterdam UMC, Vrije Universiteit, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Tanja D de Gruijl
- Departments of Medical Oncology, Amsterdam UMC, Vrije Universiteit, Cancer Center Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Heine A, Flores C, Gevensleben H, Diehl L, Heikenwalder M, Ringelhan M, Janssen KP, Nitsche U, Garbi N, Brossart P, Knolle PA, Kurts C, Höchst B. Targeting myeloid derived suppressor cells with all-trans retinoic acid is highly time-dependent in therapeutic tumor vaccination. Oncoimmunology 2017; 6:e1338995. [PMID: 28920004 DOI: 10.1080/2162402x.2017.1338995] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/28/2017] [Accepted: 06/01/2017] [Indexed: 12/30/2022] Open
Abstract
Tumor immune escape is a critical problem which frequently accounts for the failure of therapeutic tumor vaccines. Among the most potent suppressors of tumor immunity are myeloid derived suppressor cells (MDSCs). MDSCs can be targeted by all-trans-retinoic-acid (atRA), which reduced their numbers and increased response rates in several vaccination studies. However, not much is known about the optimal administration interval between atRA and the vaccine as well as about its mode of action. Here we demonstrate in 2 different murine tumor models that mice unresponsive to a therapeutic vaccine harbored higher MDSC numbers than did responders. Application of atRA overcame MDSC-mediated immunosuppression and restored tumor control. Importantly, atRA was protective only when administered 3 d after vaccination (delayed treatment), whereas simultaneous administration even decreased the anti-tumor immune response and reduced survival. When analyzing the underlying mechanisms, we found that delayed, but not simultaneous atRA treatment with vaccination abrogated the suppressive capacity in monocytic MDSCs and instead caused them to upregulate MHC-class-II. Consistently, MDSCs from patients with colorectal carcinoma also failed to upregulate HLA-DR after ex vivo treatment with TLR-ligation. Overall, we demonstrate that atRA can convert non-responders to responders to vaccination by suppressing MDSCs function and not only by reducing their number. Moreover, we identify a novel, strictly time-dependent mode of action of atRA to be considered during immunotherapeutic protocols in the future.
Collapse
Affiliation(s)
- Annkristin Heine
- Medical Clinic III for Oncology, Hematology and Rheumatology, University Hospital Bonn, Germany.,Institute of Experimental Immunology, University Bonn, Germany
| | - Chrystel Flores
- Medical Clinic III for Oncology, Hematology and Rheumatology, University Hospital Bonn, Germany.,Institute of Experimental Immunology, University Bonn, Germany
| | | | - Linda Diehl
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Germany.,Institute of Molecular Medicine, University Bonn, Germany
| | - Mathias Heikenwalder
- Institute of Virology, Technische Universität München.,Division of Chronic Inflammation and Cancer, German Cancer Research Center, DKFZ, Germany
| | - Marc Ringelhan
- Department for Internal Medicine 2, Klinikum rechts der Isar, Technische Universität München, Germany
| | | | - Ulrich Nitsche
- Department of Surgery, Technische Universität München, Germany
| | - Natalio Garbi
- Institute of Experimental Immunology, University Bonn, Germany
| | - Peter Brossart
- Medical Clinic III for Oncology, Hematology and Rheumatology, University Hospital Bonn, Germany
| | - Percy A Knolle
- Institute of Molecular Medicine, University Bonn, Germany.,Institute of Molecular Immunology and Experimental Oncology, Technische Universität München, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, University Bonn, Germany
| | - Bastian Höchst
- Institute of Molecular Medicine, University Bonn, Germany.,Institute of Molecular Immunology and Experimental Oncology, Technische Universität München, Germany
| |
Collapse
|
5
|
O'Connor MA, Rastad JL, Green WR. The Role of Myeloid-Derived Suppressor Cells in Viral Infection. Viral Immunol 2017; 30:82-97. [PMID: 28051364 DOI: 10.1089/vim.2016.0125] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are heterogeneous immature myeloid cells that are well described as potent immune regulatory cells during human cancer and murine tumor models. Reports of MDSCs during viral infections remain limited, and their association with immunomodulation of viral diseases is still being defined. Here, we provide an overview of MDSCs or MDSC-like cells identified during viral infections, including murine viral models and human viral diseases. Understanding the similarities and/or differences of virally induced versus tumor-derived MDSCs will be important for designing future immunotherapeutic approaches.
Collapse
Affiliation(s)
- Megan A O'Connor
- 1 Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon , New Hampshire
| | - Jessica L Rastad
- 1 Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon , New Hampshire
| | - William R Green
- 1 Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon , New Hampshire.,2 Norris Cotton Cancer Center , Geisel School of Medicine at Dartmouth, Lebanon , New Hampshire
| |
Collapse
|
6
|
Liu YJ, Dou XQ, Wang F, Zhang J, Wang XL, Xu GL, Xiang SS, Gao X, Fu J, Song HF. IL-4Rα aptamer-liposome-CpG oligodeoxynucleotides suppress tumour growth by targeting the tumour microenvironment. J Drug Target 2016; 25:275-283. [PMID: 27819142 DOI: 10.1080/1061186x.2016.1258569] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumour immunosuppressive microenvironments inhibit antigen-specific cellular responses and interfere with CpG-mediated immunotherapy. Overcoming tumour microenvironment (TME) immunosuppression is an important strategy for effective therapy. This study investigated the ability of a tumour-targeting IL-4Rα aptamer-liposome-CpG ODN delivery system to introduce CpG into tumours and overcome the immunosuppressive TME. The IL-4Rα-liposome-CpG delivery system was prepared. FAM-CpG visualisation was used to demonstrate tumour targeting in vitro and in vivo. Anti-tumour effects of this delivery system were evaluated in CT26 tumour-bearing mice. Mechanisms for conquering the TME were investigated. FAM-CpG was better distributed into the tumours upon treatment with IL-4Rα-liposome-FAM-CpG compared to distribution in the control group in vitro and in vivo. IL-4Rα-aptamer-liposome-CpG treatment inhibited distinct myeloid-derived suppressor cell populations in tumours and bone marrow. Similar profiles were observed for regulatory T cells in tumours. In CT26 tumour-bearing mice, IL-4Rα-liposome-CpG treatment exhibited enhanced anti-tumour activity. Increased mRNA levels of TNF-α, IL-2, and IL-12, and decreased mRNA levels of VEGF, IL-6, IL-10, MMP9, arginase-1, inducible NOS, CXCL9, p-Stat3, and NF-κB were observed in tumours upon IL-4R-liposome-CpG-treatment. The results suggested that pharmacologic targeting by the IL-4R aptamer-liposome-CpG system improves TME therapeutic benefit and provides a rationale for cancer immunotherapies.
Collapse
Affiliation(s)
- Yu-Jie Liu
- a Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine , Beijing , People's Republic of China.,b Department of Pharmacology, Guangxi Medical University , Nanning, People's Republic of China
| | - Xiao-Qian Dou
- a Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine , Beijing , People's Republic of China.,b Department of Pharmacology, Guangxi Medical University , Nanning, People's Republic of China
| | - Fang Wang
- a Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine , Beijing , People's Republic of China
| | - Jing Zhang
- a Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine , Beijing , People's Republic of China
| | - Xiao-Lin Wang
- a Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine , Beijing , People's Republic of China
| | - Gui-Li Xu
- a Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine , Beijing , People's Republic of China
| | - Shen-Si Xiang
- a Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine , Beijing , People's Republic of China
| | - Xin Gao
- a Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine , Beijing , People's Republic of China
| | - Jie Fu
- a Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine , Beijing , People's Republic of China
| | - Hai-Feng Song
- a Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine , Beijing , People's Republic of China.,b Department of Pharmacology, Guangxi Medical University , Nanning, People's Republic of China
| |
Collapse
|
7
|
miR-34a expands myeloid-derived suppressor cells via apoptosis inhibition. Exp Cell Res 2014; 326:259-66. [DOI: 10.1016/j.yexcr.2014.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 03/21/2014] [Accepted: 04/16/2014] [Indexed: 01/08/2023]
|