1
|
Gao Z, Hu H, Huang Y, Yu F, Lou B. Mesencephalic astrocyte-derived neurotrophic factor upregulates CHOP and ATF6 in the rat retina with retinitis pigmentosa. Ophthalmic Genet 2025:1-9. [PMID: 40113270 DOI: 10.1080/13816810.2025.2482610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/27/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
PURPOSE In the current work, we investigated the potential protective function of MANF against the degeneration of RP in S334ter-3 rats and the mechanism underlying these effects. METHODS The left eye of rat was injected with MANF, and the right eye injected PBS as a control. The levels of those ER stress associated proteins were determined by western blot analysis. RESULTS First, those ER stress associated proteins were detected in S334ter-3 rats. Among these proteins, a decrease in the expression of PERK was only showed from PD 6 to PD 12. Surprisingly, a dramatic increase of ATF6 was induced by injection MANF. Then, the expression of ATF6 protein declined rapidly to the control eye. Furthermore, a remarkable increase in the expression of CHOP was examined at 6 h, which peaked at 12 h and maintained the level until 48 h. At the same time, CHOP was detected in Müller cells but not in photoreceptor; nevertheless, photoreceptor survival clearly improved. The increasing expressions of CHOP and ATF6 in SD rats were similar to the changes in S33ter-3 rats after injection MANF. CONCLUSIONS These results indicate that MANF may play an important role in protecting photoreceptor degeneration in RP.
Collapse
Affiliation(s)
- Zhenya Gao
- School of Medicine, Xuchang University, Xuchang, China
- Ophthalmology, Xuchang Central Hospital, Xuchang, China
- Ophthalmology, Xuchang Aier Eye Hospital, Xuchang, China
| | - Hongge Hu
- Ophthalmology, Xuchang Central Hospital, Xuchang, China
| | | | - Fang Yu
- School of Medicine, Xuchang University, Xuchang, China
| | - Bin Lou
- Ophthalmology, Xuchang Central Hospital, Xuchang, China
| |
Collapse
|
2
|
Qureshi S, Lee S, Steidl W, Ritzer L, Parise M, Chaubal A, Kumar V. Endoplasmic Reticulum Stress Disrupts Mitochondrial Bioenergetics, Dynamics and Causes Corneal Endothelial Cell Apoptosis. Invest Ophthalmol Vis Sci 2023; 64:18. [PMID: 37962528 PMCID: PMC10653263 DOI: 10.1167/iovs.64.14.18] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Purpose Endoplasmic reticulum (ER) and mitochondrial stress are independently associated with corneal endothelial cell (CEnC) loss in many corneal diseases, including Fuchs' endothelial corneal dystrophy (FECD). However, the role of ER stress in mitochondrial dysfunction contributing to CEnC apoptosis is unknown. The purpose of this study is to explore the crosstalk between ER and mitochondrial stress in CEnC. Methods Human corneal endothelial cell line (HCEnC-21T) and human corneal endothelial tissues were treated with ER stressor tunicamycin. ER stress-reducing chemical 4-phenyl butyric acid (4-PBA) was used in HCEnC-21T after tunicamycin. Fuchs' corneal endothelial cell line (F35T) was used to determine differential activation of ER stress with respect to HCEnC-21T at the baseline. ER stress, mitochondrial-mediated intrinsic apoptotic, mitochondrial fission, and fusion proteins were determined using immunoblotting and immunohistochemistry. Mitochondrial bioenergetics were assessed by mitochondrial membrane potential (MMP) loss and ATP production at 48 hours after tunicamycin. Mitochondria dynamics (shape, area, perimeter) were also analyzed at 24 hours using transmission electron microscopy. Results Treatment of HCEnC-21T cell line with tunicamycin activated three ER stress pathways (PERK-eIF2α-CHOP, IRE1α-XBP1, and ATF6), reduced cell viability, upregulated mitochondrial-mediated intrinsic apoptotic molecules (cleaved caspase 9, caspase 3, PARP, Bax, cytochrome C), downregulated anti-apoptotic Bcl-2 protein, initiated mitochondrial dysfunction by loss of MMP and lowering of ATP production, and caused mitochondrial swelling and fragmentation with increased expression of mitochondrial fission proteins (Fis1 and p-Drp1). Fuchs' CEnC (F35T) cell line also showed activation of the ER stress-related proteins (p-eIF2α, GRP78, CHOP, XBP1) compared to HCEnC-21T at the baseline. The 4-PBA ameliorated cell loss and reduced cleaved caspase 3 and 9, thereby rescuing tunicamycin-induced cell death but not mitochondrial bioenergetics in HCEnC-21T cell line. Conclusions Tunicamycin-induced ER stress disrupts mitochondrial bioenegetics, dynamics and contributes to the loss of CEnC viability. This novel study highlights the importance of ER-mitochondria crosstalk and its contribution to CEnCs apoptosis, seen in many corneal diseases, including FECD.
Collapse
Affiliation(s)
- Saba Qureshi
- Eye and Vision Research Institute, Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Stephanie Lee
- Eye and Vision Research Institute, Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - William Steidl
- Eye and Vision Research Institute, Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Lukas Ritzer
- Eye and Vision Research Institute, Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Michael Parise
- Touro College of Osteopathic Medicine, New York, New York, United States
| | - Ananya Chaubal
- Herricks High School, New Hyde Park, New York, United States
| | - Varun Kumar
- Eye and Vision Research Institute, Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
3
|
Chen X, Shi C, He M, Xiong S, Xia X. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets. Signal Transduct Target Ther 2023; 8:352. [PMID: 37709773 PMCID: PMC10502142 DOI: 10.1038/s41392-023-01570-w] [Citation(s) in RCA: 247] [Impact Index Per Article: 123.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/17/2023] [Accepted: 07/14/2023] [Indexed: 09/16/2023] Open
Abstract
The endoplasmic reticulum (ER) functions as a quality-control organelle for protein homeostasis, or "proteostasis". The protein quality control systems involve ER-associated degradation, protein chaperons, and autophagy. ER stress is activated when proteostasis is broken with an accumulation of misfolded and unfolded proteins in the ER. ER stress activates an adaptive unfolded protein response to restore proteostasis by initiating protein kinase R-like ER kinase, activating transcription factor 6, and inositol requiring enzyme 1. ER stress is multifaceted, and acts on aspects at the epigenetic level, including transcription and protein processing. Accumulated data indicates its key role in protein homeostasis and other diverse functions involved in various ocular diseases, such as glaucoma, diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, achromatopsia, cataracts, ocular tumors, ocular surface diseases, and myopia. This review summarizes the molecular mechanisms underlying the aforementioned ocular diseases from an ER stress perspective. Drugs (chemicals, neurotrophic factors, and nanoparticles), gene therapy, and stem cell therapy are used to treat ocular diseases by alleviating ER stress. We delineate the advancement of therapy targeting ER stress to provide new treatment strategies for ocular diseases.
Collapse
Affiliation(s)
- Xingyi Chen
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chaoran Shi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Meihui He
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Siqi Xiong
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Ophthalmology, Central South University, 410008, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
4
|
Massoudi D, Gorman S, Kuo YM, Iwawaki T, Oakes SA, Papa FR, Gould DB. Deletion of the Unfolded Protein Response Transducer IRE1α Is Detrimental to Aging Photoreceptors and to ER Stress-Mediated Retinal Degeneration. Invest Ophthalmol Vis Sci 2023; 64:30. [PMID: 37097227 PMCID: PMC10148664 DOI: 10.1167/iovs.64.4.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/06/2023] [Indexed: 04/26/2023] Open
Abstract
Purpose The unfolded protein response (UPR) is triggered when the protein folding capacity of the endoplasmic reticulum (ER) is overwhelmed and misfolded proteins accumulate in the ER, a condition referred to as ER stress. IRE1α is an ER-resident protein that plays major roles in orchestrating the UPR. Several lines of evidence implicate the UPR and its transducers in neurodegenerative diseases, including retinitis pigmentosa (RP), a group of inherited diseases that cause progressive dysfunction and loss of rod and cone photoreceptors. This study evaluated the contribution of IRE1α to photoreceptor development, homeostasis, and degeneration. Methods We used a conditional gene targeting strategy to selectively inactivate Ire1α in mouse rod photoreceptors. We used a combination of optical coherence tomography (OCT) imaging, histology, and electroretinography (ERG) to assess longitudinally the effect of IRE1α deficiency in retinal development and function. Furthermore, we evaluated the IRE1α-deficient retina responses to tunicamycin-induced ER stress and in the context of RP caused by the rhodopsin mutation RhoP23H. Results OCT imaging, histology, and ERG analyses did not reveal abnormalities in IRE1α-deficient retinas up to 3 months old. However, by 6 months of age, the Ire1α mutant animals showed reduced outer nuclear layer thickness and deficits in retinal function. Furthermore, conditional inactivation of Ire1α in rod photoreceptors accelerated retinal degeneration caused by the RhoP23H mutation. Conclusions These data suggest that IRE1α is dispensable for photoreceptor development but important for photoreceptor homeostasis in aging retinas and for protecting against ER stress-mediated photoreceptor degeneration.
Collapse
Affiliation(s)
- Dawiyat Massoudi
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Seán Gorman
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Yien-Ming Kuo
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Takao Iwawaki
- Division of Cell Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Scott A. Oakes
- Department of Pathology, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States
| | - Feroz R. Papa
- Department of Medicine, Diabetes Center, Quantitative Biosciences Institute and Lung Biology Center University of California, San Francisco, San Francisco, California, United States
| | - Douglas B. Gould
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
- Department of Anatomy, Institute for Human Genetics, Cardiovascular Research Institute, Bakar Aging Research Institute, University of California, San Francisco, California, United States
| |
Collapse
|
5
|
Zhen F, Zou T, Wang T, Zhou Y, Dong S, Zhang H. Rhodopsin-associated retinal dystrophy: Disease mechanisms and therapeutic strategies. Front Neurosci 2023; 17:1132179. [PMID: 37077319 PMCID: PMC10106759 DOI: 10.3389/fnins.2023.1132179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
Rhodopsin is a light-sensitive G protein-coupled receptor that initiates the phototransduction cascade in rod photoreceptors. Mutations in the rhodopsin-encoding gene RHO are the leading cause of autosomal dominant retinitis pigmentosa (ADRP). To date, more than 200 mutations have been identified in RHO. The high allelic heterogeneity of RHO mutations suggests complicated pathogenic mechanisms. Here, we discuss representative RHO mutations as examples to briefly summarize the mechanisms underlying rhodopsin-related retinal dystrophy, which include but are not limited to endoplasmic reticulum stress and calcium ion dysregulation resulting from protein misfolding, mistrafficking, and malfunction. Based on recent advances in our understanding of disease mechanisms, various treatment methods, including adaptation, whole-eye electrical stimulation, and small molecular compounds, have been developed. Additionally, innovative therapeutic treatment strategies, such as antisense oligonucleotide therapy, gene therapy, optogenetic therapy, and stem cell therapy, have achieved promising outcomes in preclinical disease models of rhodopsin mutations. Successful translation of these treatment strategies may effectively ameliorate, prevent or rescue vision loss related to rhodopsin mutations.
Collapse
Affiliation(s)
- Fangyuan Zhen
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital, Zhengzhou, China
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Tongdan Zou
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ting Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yongwei Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital, Zhengzhou, China
| | - Shuqian Dong
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital, Zhengzhou, China
- *Correspondence: Shuqian Dong, ; Houbin Zhang,
| | - Houbin Zhang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
- *Correspondence: Shuqian Dong, ; Houbin Zhang,
| |
Collapse
|
6
|
Wu KY, Kulbay M, Toameh D, Xu AQ, Kalevar A, Tran SD. Retinitis Pigmentosa: Novel Therapeutic Targets and Drug Development. Pharmaceutics 2023; 15:685. [PMID: 36840007 PMCID: PMC9963330 DOI: 10.3390/pharmaceutics15020685] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of hereditary diseases characterized by progressive degeneration of retinal photoreceptors leading to progressive visual decline. It is the most common type of inherited retinal dystrophy and has a high burden on both patients and society. This condition causes gradual loss of vision, with its typical manifestations including nyctalopia, concentric visual field loss, and ultimately bilateral central vision loss. It is one of the leading causes of visual disability and blindness in people under 60 years old and affects over 1.5 million people worldwide. There is currently no curative treatment for people with RP, and only a small group of patients with confirmed RPE65 mutations are eligible to receive the only gene therapy on the market: voretigene neparvovec. The current therapeutic armamentarium is limited to retinoids, vitamin A supplements, protection from sunlight, visual aids, and medical and surgical interventions to treat ophthalmic comorbidities, which only aim to slow down the progression of the disease. Considering such a limited therapeutic landscape, there is an urgent need for developing new and individualized therapeutic modalities targeting retinal degeneration. Although the heterogeneity of gene mutations involved in RP makes its target treatment development difficult, recent fundamental studies showed promising progress in elucidation of the photoreceptor degeneration mechanism. The discovery of novel molecule therapeutics that can selectively target specific receptors or specific pathways will serve as a solid foundation for advanced drug development. This article is a review of recent progress in novel treatment of RP focusing on preclinical stage fundamental research on molecular targets, which will serve as a starting point for advanced drug development. We will review the alterations in the molecular pathways involved in the development of RP, mainly those regarding endoplasmic reticulum (ER) stress and apoptotic pathways, maintenance of the redox balance, and genomic stability. We will then discuss the therapeutic approaches under development, such as gene and cell therapy, as well as the recent literature identifying novel potential drug targets for RP.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Merve Kulbay
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Dana Toameh
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - An Qi Xu
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ananda Kalevar
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
7
|
Abstract
Inherited retinal diseases (IRDs) are an important cause of blindness worldwide. Over 270 genes have been associated with IRD. Genetic testing can determine the cause of the clinical disease in the majority of patients. However, at least 25-50% of patients with clinical diagnosis of IRD remain unsolved even after whole genome sequencing. Animal models of IRD can be useful for expanding the set of established IRD genes, to gain biological understanding of the function of these genes in the retina, and to test advanced therapeutics prior to human clinical trials. In this chapter some small and large animal models of IRD are discussed including some of the advantages and limitations of each for various forms of retinopathy.
Collapse
|
8
|
Jiang K, Fairless E, Kanda A, Gotoh N, Cogliati T, Li T, Swaroop A. Divergent Effects of HSP70 Overexpression in Photoreceptors During Inherited Retinal Degeneration. Invest Ophthalmol Vis Sci 2021; 61:25. [PMID: 33107904 PMCID: PMC7594617 DOI: 10.1167/iovs.61.12.25] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose Disruption of proteostasis is a key event in many neurodegenerative diseases. Heat shock proteins (HSPs) participate in multiple functions associated with intracellular transport and proteostasis. We evaluated the effect of augmented HSP70 expression in mutant photoreceptors of mouse retinal degeneration models to test the hypothesis that failure to sustain HSP70 expression contributes to photoreceptor cell death. Methods We examined HSP70 expression in retinas of wild-type and mutant mice by RNA and protein analysis. A transgenic mouse line, TgCrx-Hspa1a-Flag, was generated to express FLAG-tagged full-length HSP70 protein under control of a 2.3 kb mouse Crx promoter. This line was crossed to three distinct retinal degeneration mouse models. Retinal structure and function were evaluated by histology, immunohistochemistry, and electroretinography. Results In seven different mouse models of retinal degeneration, we detected transient elevation of endogenous HSP70 expression at early stages, followed by a dramatic reduction as cell death ensues, suggesting an initial adaptive response to cellular stress. Augmented expression of HSP70 in RHOT17M mice, in which mutant rhodopsin is misfolded, marginally improved photoreceptor survival, whereas elevated HSP70 led to more severe retinal degeneration in rd10 mutants that produce a partially functional PDE6B. In Rpgrip1−/− mice that display a ciliary defect, higher HSP70 had no impact on photoreceptor survival or function. Conclusions HSP70 overexpression has divergent effects in photoreceptors determined, at least in part, by the nature of the mutant protein each model carries. Additional investigations on HSP pathways and associated chaperone networks in photoreceptors are needed before designing therapeutic strategies targeting proteostasis.
Collapse
Affiliation(s)
- Ke Jiang
- Neurobiology, Neurodegeneration, and Repair Laboratory (NNRL), National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Elizabeth Fairless
- Neurobiology, Neurodegeneration, and Repair Laboratory (NNRL), National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Atsuhiro Kanda
- Neurobiology, Neurodegeneration, and Repair Laboratory (NNRL), National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Norimoto Gotoh
- Neurobiology, Neurodegeneration, and Repair Laboratory (NNRL), National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Tiziana Cogliati
- Neurobiology, Neurodegeneration, and Repair Laboratory (NNRL), National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Tiansen Li
- Neurobiology, Neurodegeneration, and Repair Laboratory (NNRL), National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Anand Swaroop
- Neurobiology, Neurodegeneration, and Repair Laboratory (NNRL), National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
9
|
Sazonova MA, Sinyov VV, Ryzhkova AI, Sazonova MD, Kirichenko TV, Khotina VA, Khasanova ZB, Doroschuk NA, Karagodin VP, Orekhov AN, Sobenin IA. Some Molecular and Cellular Stress Mechanisms Associated with Neurodegenerative Diseases and Atherosclerosis. Int J Mol Sci 2021; 22:E699. [PMID: 33445687 PMCID: PMC7828120 DOI: 10.3390/ijms22020699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic stress is a combination of nonspecific adaptive reactions of the body to the influence of various adverse stress factors which disrupt its homeostasis, and it is also a corresponding state of the organism's nervous system (or the body in general). We hypothesized that chronic stress may be one of the causes occurence of several molecular and cellular types of stress. We analyzed literary sources and considered most of these types of stress in our review article. We examined genes and mutations of nuclear and mitochondrial genomes and also molecular variants which lead to various types of stress. The end result of chronic stress can be metabolic disturbance in humans and animals, leading to accumulation of reactive oxygen species (ROS), oxidative stress, energy deficiency in cells (due to a decrease in ATP synthesis) and mitochondrial dysfunction. These changes can last for the lifetime and lead to severe pathologies, including neurodegenerative diseases and atherosclerosis. The analysis of literature allowed us to conclude that under the influence of chronic stress, metabolism in the human body can be disrupted, mutations of the mitochondrial and nuclear genome and dysfunction of cells and their compartments can occur. As a result of these processes, oxidative, genotoxic, and cellular stress can occur. Therefore, chronic stress can be one of the causes forthe occurrence and development of neurodegenerative diseases and atherosclerosis. In particular, chronic stress can play a large role in the occurrence and development of oxidative, genotoxic, and cellular types of stress.
Collapse
Affiliation(s)
- Margarita A. Sazonova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (Z.B.K.); (N.A.D.)
| | - Vasily V. Sinyov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (Z.B.K.); (N.A.D.)
| | - Anastasia I. Ryzhkova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
| | - Marina D. Sazonova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
| | - Tatiana V. Kirichenko
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (Z.B.K.); (N.A.D.)
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 117418 Moscow, Russia
| | - Victoria A. Khotina
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 117418 Moscow, Russia
| | - Zukhra B. Khasanova
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (Z.B.K.); (N.A.D.)
| | - Natalya A. Doroschuk
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (Z.B.K.); (N.A.D.)
| | - Vasily P. Karagodin
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Department of Commodity Science and Expertise, Plekhanov Russian University of Economics, 125993 Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 117418 Moscow, Russia
- Institute for Atherosclerosis Research, Skolkovo Innovative Centre, 143024 Moscow, Russia
| | - Igor A. Sobenin
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (Z.B.K.); (N.A.D.)
| |
Collapse
|
10
|
Song JY, Wang XG, Zhang ZY, Che L, Fan B, Li GY. Endoplasmic reticulum stress and the protein degradation system in ophthalmic diseases. PeerJ 2020; 8:e8638. [PMID: 32117642 PMCID: PMC7036270 DOI: 10.7717/peerj.8638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/26/2020] [Indexed: 12/16/2022] Open
Abstract
Objective Endoplasmic reticulum (ER) stress is involved in the pathogenesis of various ophthalmic diseases, and ER stress-mediated degradation systems play an important role in maintaining ER homeostasis during ER stress. The purpose of this review is to explore the potential relationship between them and to find their equilibrium sites. Design This review illustrates the important role of reasonable regulation of the protein degradation system in ER stress-mediated ophthalmic diseases. There were 128 articles chosen for review in this study, and the keywords used for article research are ER stress, autophagy, UPS, ophthalmic disease, and ocular. Data sources The data are from Web of Science, PubMed, with no language restrictions from inception until 2019 Jul. Results The ubiquitin proteasome system (UPS) and autophagy are important degradation systems in ER stress. They can restore ER homeostasis, but if ER stress cannot be relieved in time, cell death may occur. However, they are not independent of each other, and the relationship between them is complementary. Therefore, we propose that ER stability can be achieved by adjusting the balance between them. Conclusion The degradation system of ER stress, UPS and autophagy are interrelated. Because an imbalance between the UPS and autophagy can cause cell death, regulating that balance may suppress ER stress and protect cells against pathological stress damage.
Collapse
Affiliation(s)
- Jing-Yao Song
- Department of Ophthalmology, Second Hospital of Jilin University, ChangChun, China
| | - Xue-Guang Wang
- Department of Traumatic Orthopedics, Third People's Hospital of Jinan, Jinan, China
| | - Zi-Yuan Zhang
- Department of Ophthalmology, Second Hospital of Jilin University, ChangChun, China
| | - Lin Che
- Department of Ophthalmology, Second Hospital of Jilin University, ChangChun, China
| | - Bin Fan
- Department of Ophthalmology, Second Hospital of Jilin University, ChangChun, China
| | - Guang-Yu Li
- Department of Ophthalmology, Second Hospital of Jilin University, ChangChun, China
| |
Collapse
|
11
|
Ahmed CM, Dwyer BT, Romashko A, Van Adestine S, Park EH, Lou Z, Welty D, Josiah S, Savinainen A, Zhang B, Lewin AS. SRD005825 Acts as a Pharmacologic Chaperone of Opsin and Promotes Survival of Photoreceptors in an Animal Model of Autosomal Dominant Retinitis Pigmentosa. Transl Vis Sci Technol 2019; 8:30. [PMID: 31857914 PMCID: PMC6910612 DOI: 10.1167/tvst.8.6.30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/11/2019] [Indexed: 01/17/2023] Open
Abstract
Purpose Mutations in RHO, the gene for a rhodopsin, are a leading cause of autosomal dominant retinitis pigmentosa. The objective of this study was to determine if a synthetic retinal analogue (SRD005825) serves as a pharmacologic chaperone to promote appropriate membrane trafficking of a mutant version of human rhodopsin. Methods A tetracycline-inducible cell line was used to produce human wild-type and T17M opsin. A cell-free assay was used to study the impact of SRD005825 on binding of 9-cis-retinal to wild-type opsin. A cell-based assay was used to measure the effect of SRD005825 on the generation of rhodopsin by spectroscopy and Western blot and the transport of rhodopsin to the cell membrane by confocal microscopy. Mice bearing T17M RHO were treated with daily oral doses of SRD005825, and retinal degeneration was measured by spectral-domain optical coherence tomography and, at the conclusion of the experiment, by electroretinography and morphometry. Results SRD005825 competed with 9-cis-retinal for binding to wild-type opsin but promoted the formation of rhodopsin in HEK293 cells and the trafficking of T17M rhodopsin to the plasma membrane of these cells. T17M transgenic mice exhibited rapid retinal degeneration, but thinning of the outer nuclear layer representative of photoreceptor cell bodies was delayed by treatment with SRD005825. Electroretinography a-wave and b-wave amplitudes were significantly improved by drug treatment. Conclusions SRD005825 promoted the reconstitution of mutant rhodopsin and its membrane localization. Because it delayed retinal degeneration in the mouse model, it has potential as a therapeutic for autosomal dominant retinitis pigmentosa. Translational Relevance SRD005825 may be useful as a treatment to delay retinal degeneration in retinitis pigmentosa patients with rhodopsin mutations causing misfolding of the protein.
Collapse
Affiliation(s)
- Chulbul M Ahmed
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Brian T Dwyer
- Shire HGT Inc., a member of the Takeda group of companies, Cambridge, MA, USA
| | - All Romashko
- Shire HGT Inc., a member of the Takeda group of companies, Cambridge, MA, USA
| | | | - Eun-He Park
- Shire HGT Inc., a member of the Takeda group of companies, Cambridge, MA, USA
| | - Zhe Lou
- Shire HGT Inc., a member of the Takeda group of companies, Cambridge, MA, USA
| | - Devi Welty
- Shire HGT Inc., a member of the Takeda group of companies, Cambridge, MA, USA
| | - Seren Josiah
- Shire HGT Inc., a member of the Takeda group of companies, Cambridge, MA, USA
| | - Annel Savinainen
- Shire HGT Inc., a member of the Takeda group of companies, Cambridge, MA, USA
| | - Bohon Zhang
- Shire HGT Inc., a member of the Takeda group of companies, Cambridge, MA, USA
| | - Alfred S Lewin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
12
|
Athanasiou D, Aguila M, Bellingham J, Li W, McCulley C, Reeves PJ, Cheetham ME. The molecular and cellular basis of rhodopsin retinitis pigmentosa reveals potential strategies for therapy. Prog Retin Eye Res 2018; 62:1-23. [PMID: 29042326 PMCID: PMC5779616 DOI: 10.1016/j.preteyeres.2017.10.002] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/03/2017] [Accepted: 10/13/2017] [Indexed: 12/12/2022]
Abstract
Inherited mutations in the rod visual pigment, rhodopsin, cause the degenerative blinding condition, retinitis pigmentosa (RP). Over 150 different mutations in rhodopsin have been identified and, collectively, they are the most common cause of autosomal dominant RP (adRP). Mutations in rhodopsin are also associated with dominant congenital stationary night blindness (adCSNB) and, less frequently, recessive RP (arRP). Recessive RP is usually associated with loss of rhodopsin function, whereas the dominant conditions are a consequence of gain of function and/or dominant negative activity. The in-depth characterisation of many rhodopsin mutations has revealed that there are distinct consequences on the protein structure and function associated with different mutations. Here we categorise rhodopsin mutations into seven discrete classes; with defects ranging from misfolding and disruption of proteostasis, through mislocalisation and disrupted intracellular traffic to instability and altered function. Rhodopsin adRP offers a unique paradigm to understand how disturbances in photoreceptor homeostasis can lead to neuronal cell death. Furthermore, a wide range of therapies have been tested in rhodopsin RP, from gene therapy and gene editing to pharmacological interventions. The understanding of the disease mechanisms associated with rhodopsin RP and the development of targeted therapies offer the potential of treatment for this currently untreatable neurodegeneration.
Collapse
Affiliation(s)
| | - Monica Aguila
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - James Bellingham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Wenwen Li
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Caroline McCulley
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Philip J Reeves
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, UK.
| | | |
Collapse
|
13
|
Abstract
Genetic mouse models mimicking human diseases have been developed and utilized for retinal research in various topics, involving anatomy, physiology, biochemistry, and pathology. The main reasons why mouse models are important for retinal research include that rodents share a key retinal homology with humans and that genetic manipulation is relatively easily applicable for mice. Here, we describe genetic mouse models, which are categorized with functions in the retina and relationship with human diseases.
Collapse
Affiliation(s)
- Akiko Maeda
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Tadao Maeda
- Research Division, Kobe Research Institute, HEALIOS K.K., Kobe, Japan.
| |
Collapse
|
14
|
Xiong S, Yu Y, Zhou X, Xia X, Jiang H. Rhodopsin T17M Mutant Inhibits Complement C3 Secretion in Retinal Pigment Epithelium via ROS Induced Downregulation of TWIST1. J Cell Biochem 2017; 118:4914-4920. [PMID: 28569420 DOI: 10.1002/jcb.26177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/31/2017] [Indexed: 11/07/2022]
Abstract
Rhodopsin mutations cause autosomal dominant form of retinitis pigmentosa (RP). T17M rhodopsin predisposes cells to endoplasmic reticulum stress induced apoptosis. However, the pathogenic role of T17M rhodopsin in RP is not completely understood. Complement C3 has a protective role in RP pathogenesis. This study aimed to investigate whether T17M rhodopsin regulates C3 secretion in retinal pigment epithelium. The human retinal pigment epithelial cell line (ARPE-19) was engineered to overexpress wide-type (WT) and T17M rhodopsin. Gene expression was detected by RT-PCR and Western blot analysis. C3 secretion was detected by ELISA. The overexpression of T17M rhodopsin significantly induced ROS and reduced C3 secretion and transcription in ARPE-19 cells, but ROS scavengers could partially rescue reduced C3 secretion and transcription. Mechanistically, we found that ROS suppressed transcription factor TWIST1 which is responsible for activated transcription of C3. In conclusion, our data provide the first evidence that T17M rhodopsin mutant disrupts C3 secretion via the induction of ROS and the suppression of TWIST1. These findings reveal novel insight into the pathogenic role of mutant rhodopsin in RP. J. Cell. Biochem. 118: 4914-4920, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Siqi Xiong
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Yixin Yu
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Xiaoyun Zhou
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Haibo Jiang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410078, China
| |
Collapse
|
15
|
Chen Y, Brooks MJ, Gieser L, Swaroop A, Palczewski K. Transcriptome profiling of NIH3T3 cell lines expressing opsin and the P23H opsin mutant identifies candidate drugs for the treatment of retinitis pigmentosa. Pharmacol Res 2016; 115:1-13. [PMID: 27838510 DOI: 10.1016/j.phrs.2016.10.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/18/2016] [Accepted: 10/26/2016] [Indexed: 01/01/2023]
Abstract
Mammalian cells are commonly employed in screening assays to identify active compounds that could potentially affect the progression of different human diseases including retinitis pigmentosa (RP), a class of inherited diseases causing retinal degeneration with compromised vision. Using transcriptome analysis, we compared NIH3T3 cells expressing wildtype (WT) rod opsin with a retinal disease-causing single P23H mutation. Surprisingly, heterologous expression of WT opsin in NIH3T3 cells caused more than a 2-fold change in 783 out of 16,888 protein coding transcripts. The perturbed genes encoded extracellular matrix proteins, growth factors, cytoskeleton proteins, glycoproteins and metalloproteases involved in cell adhesion, morphology and migration. A different set of 347 transcripts was either up- or down-regulated when the P23H mutant opsin was expressed suggesting an altered molecular perturbation compared to WT opsin. Transcriptome perturbations elicited by drug candidates aimed at mitigating the effects of the mutant protein revealed that different drugs targeted distinct molecular pathways that resulted in a similar phenotype selected by a cell-based high-throughput screen. Thus, transcriptome profiling can provide essential information about the therapeutic potential of a candidate drug to restore normal gene expression in pathological conditions.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Matthew J Brooks
- Neurobiology-Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Linn Gieser
- Neurobiology-Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
16
|
Hasegawa T, Muraoka Y, Ikeda HO, Tsuruyama T, Kondo M, Terasaki H, Kakizuka A, Yoshimura N. Neuoroprotective efficacies by KUS121, a VCP modulator, on animal models of retinal degeneration. Sci Rep 2016; 6:31184. [PMID: 27503804 PMCID: PMC4977562 DOI: 10.1038/srep31184] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/14/2016] [Indexed: 12/17/2022] Open
Abstract
Retinitis pigmentosa (RP) is one of the leading causes of adult blindness and has no established therapy. We have shown that valosin-containing protein (VCP) modulators, Kyoto University Substances (KUSs), ameliorated abnormally low ATP levels by inhibiting the ATPase of VCP, thereby protected several types of cells, including retinal neurons, from cell death-inducing insults. In this study, we found that KUS121, one of the VCP modulators, effectively protects photoreceptors both morphologically and functionally, in two animal models of retinal degeneration, rd12 mice and RP rabbits with a rhodopsin (Pro347Leu) mutation. In rd12 mice, KUS121 suppressed the loss of photoreceptors, not only rods but also cones, as well as the visual function deterioration. Significant protective effects existed even when the medication was started in later stages of the disease. In RP rabbits, KUS121 suppressed thinning of the outer nuclear layer and maintained visual function. In the retinas treated with KUS121, suppression of endoplasmic reticulum stress, activation of mammalian target of rapamycin and suppression of disease-associated apoptosis were evident. The ability of KUS121 to protect photoreceptors, especially cones, even in later stages of the disease may contribute to the preservation of central vision in RP patients, which is important for quality of vision.
Collapse
Affiliation(s)
- Tomoko Hasegawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Yuki Muraoka
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Hanako Ohashi Ikeda
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan.,Department of Experimental Therapeutics, Institute for Advancement of Clinical and Translational Science, Kyoto university Hospital, Kyoto, 606-8501, Japan
| | - Tatsuaki Tsuruyama
- Center for Anatomical Studies, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, 514-8607, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, 464-8601, Japan
| | - Akira Kakizuka
- Laboratory of Functional Biology, Kyoto University Graduate School of Biostudies &Solution Oriented Research for Science and Technology, Kyoto, 606-8501, Japan
| | - Nagahisa Yoshimura
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| |
Collapse
|
17
|
Jiang H, Xiong S, Xia X. Chemical chaperone 4-phenylbutyrate prevents endoplasmic reticulum stress induced by T17M rhodopsin. Cell Biosci 2014; 4:75. [PMID: 25530840 PMCID: PMC4271335 DOI: 10.1186/2045-3701-4-75] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/25/2014] [Indexed: 11/30/2022] Open
Abstract
Background Rhodopsin mutations are associated with the autosomal dominant form of retinitis pigmentosa. T17M mutation in rhodopsin predisposes cells to endoplasmic reticulum (ER) stress and induces cell death. This study aimed to examine whether chemical chaperone 4-phenylbutyrate prevents ER stress induced by rhodopsin T17M. Results ARPE-19 cells were transfected with myc-tagged wild-type (WT) and T17M rhodopsin constructs. Turnover of WT and T17M rhodopsin was measured by cycloheximide chase analysis. The activity of ubiquitin-proteasome system was evaluated by GFPU reporter. We found that T17M rhodopsin was misfolded, ubiqutinated and eliminated by ER-associated degradation pathway (ERAD) in ARPE-19 cells. Accumulated T17M rhodopsin induced unfolded protein response, but had no effect on the activity of ubiquitin proteasome system. Moreover, chemical chaperone 4-phenylbutyrate facilitated the turnover of T17M rhodopsin and prevented apoptosis and ER stress induced by T17M rhodopsin. Conclusions Chemical chaperone could attenuate UPR signaling and ER stress induced by T17M rhodopsin and has potential therapeutic significance for retinitis pigmentosa.
Collapse
Affiliation(s)
- Haibo Jiang
- Department of Ophthalmology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410078 P.R. China
| | - Siqi Xiong
- Department of Ophthalmology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410078 P.R. China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410078 P.R. China
| |
Collapse
|
18
|
Ikeda HO, Sasaoka N, Koike M, Nakano N, Muraoka Y, Toda Y, Fuchigami T, Shudo T, Iwata A, Hori S, Yoshimura N, Kakizuka A. Novel VCP modulators mitigate major pathologies of rd10, a mouse model of retinitis pigmentosa. Sci Rep 2014; 4:5970. [PMID: 25096051 PMCID: PMC4122966 DOI: 10.1038/srep05970] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 07/18/2014] [Indexed: 11/25/2022] Open
Abstract
Neuroprotection may prevent or forestall the progression of incurable eye diseases, such as retinitis pigmentosa, one of the major causes of adult blindness. Decreased cellular ATP levels may contribute to the pathology of this eye disease and other neurodegenerative diseases. Here we describe small compounds (Kyoto University Substances, KUSs) that were developed to inhibit the ATPase activity of VCP (valosin-containing protein), the most abundant soluble ATPase in the cell. Surprisingly, KUSs did not significantly impair reported cellular functions of VCP but nonetheless suppressed the VCP-dependent decrease of cellular ATP levels. Moreover, KUSs, as well as exogenous ATP or ATP-producing compounds, e.g. methylpyruvate, suppressed endoplasmic reticulum stress, and demonstrably protected various types of cultured cells from death, including several types of retinal neuronal cells. We then examined their in vivo efficacies in rd10, a mouse model of retinitis pigmentosa. KUSs prevented photoreceptor cell death and preserved visual function. These results reveal an unexpected, crucial role of ATP consumption by VCP in determining cell fate in this pathological context, and point to a promising new neuroprotective strategy for currently incurable retinitis pigmentosa.
Collapse
Affiliation(s)
- Hanako Ohashi Ikeda
- 1] Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan [2] Laboratory of Functional Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan
| | - Norio Sasaoka
- Laboratory of Functional Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan
| | - Masaaki Koike
- Laboratory of Functional Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan
| | - Noriko Nakano
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Yuki Muraoka
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Yoshinobu Toda
- Center for Anatomical Studies, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | | | - Toshiyuki Shudo
- 1] Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan [2] Laboratory of Functional Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan [3] Daito Chemix, Ishibashi-cho Fukui-city Fukui 910-3137, Japan
| | - Ayana Iwata
- Laboratory of Functional Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan
| | - Seiji Hori
- Laboratory of Functional Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan
| | - Nagahisa Yoshimura
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Akira Kakizuka
- Laboratory of Functional Biology, Kyoto University Graduate School of Biostudies, Kyoto 606-8501, Japan
| |
Collapse
|