1
|
Faghih M, Moshiri M, Mazrouei Arani N, Ahmadzadeh F, Jafari N, Ghasemi M, Abediankenari S. Evaluation of TNF-α and IFN-γ primed conditioned medium of mesenchymal stem cell in acetic acid-induced mouse model of acute colitis. Cell Immunol 2024; 405-406:104876. [PMID: 39342814 DOI: 10.1016/j.cellimm.2024.104876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024]
Abstract
IBD, an autoimmune-inflammatory disorder that affects people who are genetically prone to inflammation. There is a lot of interest in MSC-CM therapy, especially when primed with TNF-α + IFN-γ. Throughout the study, data were collected on the percentage of apoptotic cells, gene expression of ZO-1, Foxp3, GATA3, IDO-1, Muc2, T-bet, Notch1, TNFR2, and ROR-γt, colon weight and length, histopathological analysis, and DAI. TNF-α and IL-10 levels were assessed in addition to the NO level. The results suggest that primed MSC-CM improved DAI, mucosal deterioration, intestinal inflammation and NO concentration. The amount of TNF-α was decreased, but IL-10 and the colon's percentage of apoptotic cells was increased. The mRNA expression of ZO-1, Foxp3, GATA3, IDO-1, and Muc2 genes increased greatly in the treatment groups, while the expression of T-bet, Notch1, TNFR2, and ROR-γt genes has decreased. These studies suggest that primed MSC-CM may combine with common treatments to improve responsiveness.
Collapse
MESH Headings
- Animals
- Mice
- Interferon-gamma/metabolism
- Interferon-gamma/pharmacology
- Colitis/chemically induced
- Colitis/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- Disease Models, Animal
- GATA3 Transcription Factor/metabolism
- GATA3 Transcription Factor/genetics
- Mesenchymal Stem Cells/metabolism
- Culture Media, Conditioned/pharmacology
- T-Box Domain Proteins/metabolism
- T-Box Domain Proteins/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Interleukin-10/metabolism
- Forkhead Transcription Factors/metabolism
- Forkhead Transcription Factors/genetics
- Mucin-2/metabolism
- Mucin-2/genetics
- Zonula Occludens-1 Protein/metabolism
- Zonula Occludens-1 Protein/genetics
- Apoptosis/drug effects
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Male
- Colon/pathology
- Colon/metabolism
- Receptor, Notch1/metabolism
- Receptor, Notch1/genetics
- Acute Disease
Collapse
Affiliation(s)
- Manizhe Faghih
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, IRAN; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mona Moshiri
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, IRAN; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nader Mazrouei Arani
- Anatomical Research Center, Kashan University of Medical Sciences and Health Services, kashan, IRAN
| | - Fatemeh Ahmadzadeh
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, IRAN; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Narjes Jafari
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Ghasemi
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department of Pathology, School of Medicine, Mazandaran University of Medical Sciences, Sari, IRAN
| | - Saeid Abediankenari
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, IRAN.
| |
Collapse
|
2
|
Smolinska A, Bzinkowska A, Rybkowska P, Chodkowska M, Sarnowska A. Promising Markers in the Context of Mesenchymal Stem/Stromal Cells Subpopulations with Unique Properties. Stem Cells Int 2023; 2023:1842958. [PMID: 37771549 PMCID: PMC10533301 DOI: 10.1155/2023/1842958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023] Open
Abstract
The heterogeneity of the mesenchymal stem/stromal cells (MSCs) population poses a challenge to researchers and clinicians, especially those observed at the population level. What is more, the lack of precise evidences regarding MSCs developmental origin even further complicate this issue. As the available evidences indicate several possible pathways of MSCs formation, this diverse origin may be reflected in the unique subsets of cells found within the MSCs population. Such populations differ in specialization degree, proliferation, and immunomodulatory properties or exhibit other additional properties such as increased angiogenesis capacity. In this review article, we attempted to identify such outstanding populations according to the specific surface antigens or intracellular markers. Described groups were characterized depending on their specialization and potential therapeutic application. The reports presented here cover a wide variety of properties found in the recent literature, which is quite scarce for many candidates mentioned in this article. Even though the collected information would allow for better targeting of specific subpopulations in regenerative medicine to increase the effectiveness of MSC-based therapies.
Collapse
Affiliation(s)
- Agnieszka Smolinska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Aleksandra Bzinkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Paulina Rybkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Magdalena Chodkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| |
Collapse
|
3
|
Im GB, Kim SW, Bhang SH. Fortifying the angiogenic efficacy of adipose derived stem cell spheroids using spheroid compaction. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.09.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
4
|
Zhang J, Yuan Z, Zhong W, Wei Y. Stem Cell as Vehicles of Antibody in Treatment of Lymphoma: a Novel and Potential Targeted Therapy. Stem Cell Rev Rep 2020; 17:829-841. [PMID: 33205352 DOI: 10.1007/s12015-020-10080-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2020] [Indexed: 02/06/2023]
Abstract
Lymphoma is a heterogeneous malignancy and its incidence is increasing in the past decades all over the world. Although more than half of lymphoma patients achieve complete or partial remission from the standard first-line ABVD or R-CHOP based therapy, patients who fail to respond to these regimens will give rise to relapsed or refractory (R/R) lymphoma and may lead to a worse prognosis. Developing novel agents is important for R/R lymphoma. Based on the homing ability and being genetically modified easily, stem cells are usually used as vehicles in cell-based anti-tumor therapy, which can not only retain their own biological characteristics, but also make anti-tumor agents secrete constantly in tumor environment, to eventually kill the tumor cells more effectively. In this review, we will briefly introduce the properties of antibody therapy carried by stem cells, especially the hopes and hurdles of stem cell-mediated antibody secretion in the treatment of lymphoma.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China
| | - Zhaohu Yuan
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Weijie Zhong
- Department of Geriatrics, Hematology & Oncology ward, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yaming Wei
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China. .,Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Liesveld JL, Sharma N, Aljitawi OS. Stem cell homing: From physiology to therapeutics. Stem Cells 2020; 38:1241-1253. [PMID: 32526037 DOI: 10.1002/stem.3242] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 12/13/2022]
Abstract
Stem cell homing is a multistep endogenous physiologic process that is also used by exogenously administered hematopoietic stem and progenitor cells (HSPCs). This multistep process involves cell migration and is essential for hematopoietic stem cell transplantation. The process can be manipulated to enhance ultimate engraftment potential, and understanding stem cell homing is also important to the understanding of stem cell mobilization. Homing is also of potential importance in the recruitment of marrow mesenchymal stem and stromal cells (MSCs) to sites of injury and regeneration. This process is less understood but assumes importance when these cells are used for repair purposes. In this review, the process of HSPC and MSC homing is examined, as are methods to enhance this process.
Collapse
Affiliation(s)
- Jane L Liesveld
- James P. Wilmot Cancer Institute, Department of Medicine, University of Rochester, Rochester, New York, USA
| | - Naman Sharma
- James P. Wilmot Cancer Institute, Department of Medicine, University of Rochester, Rochester, New York, USA
| | - Omar S Aljitawi
- James P. Wilmot Cancer Institute, Department of Medicine, University of Rochester, Rochester, New York, USA
| |
Collapse
|
6
|
Mao S, Ouyang W, Zhou Y, Zeng R, Zhao X, Chen Q, Zhang M, Hinek A. Addition of Chinese herbal remedy, Tongguan Capsules, to the standard treatment in patients with myocardial infarction improve the ventricular reperfusion and remodeling: Proteomic analysis of possible signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112794. [PMID: 32278029 DOI: 10.1016/j.jep.2020.112794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tongguan Capsules (TGC), a patented Chinese herbal remedy containing Salvia miltiorrhiza, Astragalus membranaceus, Borneolum syntheticum and Grasshopper, has been previously tested in the experimental model of animal hearts subjected to ischemia/reperfusion injury and its cardioprotective effect has been described. AIM OF THE STUDY This clinical trial was aimed at investigation whether the administration of TGC to patients suffered myocardial infarction (MI), would diminish dilation of the left ventricular (LV) and reduce development of the adverse clinical consequences. METHODS Eligible patients were enrolled and randomized 1:1 to TGC (4.5 g/d for 6 months) superimposed on standard treatment for MI, or the control group receiving the standard protocol alone. The outcomes of this trial were valued after 6 months and reported as a mean change from the baseline in LV end-systolic volume index (LVESVI) and as a frequency of MI recurrence, target-vessel revascularization, severity of heart failure or significant arrhythmia that required the additional therapy within 6 months. In addition, arrays with a panel of specific antibodies were used to assess levels of major cytokines and other pathophysiologic markers, that prompted conclusions about the mechanisms of the ultimate clinical outcomes in both patient's subgroups. RESULTS Meaningfully, obtained results indicated that MI patients randomly assigned to the TGC treatment, demonstrated a significant reduction of LVESVI (-4.03 ± 0.73 vs. 1.59 ± 0.43 mL/m2, P < 0.001) and a lower incidence of the major adverse cardiovascular events (5.45% vs. 11.44%, P = 0.033). Meaningfully, those patients consistently demonstrated lower serum levels of major inflammatory cytokines, as well as reduced levels of markers of myocardial apoptosis and fibrosis. CONCLUSION Addition of TGC to the current conventional treatment of MI patients, significantly reduced their adverse LV remodeling and contributed to the more positive clinical outcome. TRIAL REGISTRATION ChiCTR-IPR-17011618.
Collapse
Affiliation(s)
- Shuai Mao
- Key Discipline of Integrated Chinese and Western Medicine, Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China; Translational Medicine, Hospital for Sick Children, Toronto, M5G 0A4, Canada
| | - Wenwei Ouyang
- Key Discipline of Integrated Chinese and Western Medicine, Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yuanshen Zhou
- Key Discipline of Integrated Chinese and Western Medicine, Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Ruixiang Zeng
- Key Discipline of Integrated Chinese and Western Medicine, Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Xujie Zhao
- Key Discipline of Integrated Chinese and Western Medicine, Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Qubo Chen
- Biological Resource Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Minzhou Zhang
- Key Discipline of Integrated Chinese and Western Medicine, Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| | - Aleksander Hinek
- Translational Medicine, Hospital for Sick Children, Toronto, M5G 0A4, Canada
| |
Collapse
|
7
|
Nie H, An F, Mei J, Yang C, Zhan Q, Zhang Q. IL-1 β Pretreatment Improves the Efficacy of Mesenchymal Stem Cells on Acute Liver Failure by Enhancing CXCR4 Expression. Stem Cells Int 2020; 2020:1498315. [PMID: 32724311 PMCID: PMC7364198 DOI: 10.1155/2020/1498315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/15/2020] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs), with the powerful metabolic and functional supporting abilities for inflammatory diseases, may be an effective therapeutic strategy for acute liver failure (ALF). However, the efficacy of MSCs can still be promoted if pretreatment is applied to enhance their poor migration towards the damaged liver. The purpose of this study is to determine the effect of IL-1β pretreatment on the efficacy and homing ability of MSCs in ALF. METHODS MSCs were isolated by the whole bone marrow adherence method and characterized. The efficacy and homing ability of IL-1β-pretreated MSCs (Pre-MSCs) were examined in a rat ALF model and compared with that of MSCs and normal saline. Then, Western blot was performed to detect the c-Met and CXCR4 expression of MSCs and Pre-MSCs and followed by flow cytometry to detect the meaningful indicators. Finally, the migration abilities of different cells and different conditions were tested by the Transwell migration assay. RESULTS MSCs of ideal purity were successfully isolated and cultured. Comparing with MSCs, Pre-MSCs had significantly better efficacy on improving the survival rate and liver function of ALF rats. Further analyses of damaged liver tissues showed that IL-1β pretreatment significantly enhanced the efficacy of MSCs on suppressing liver necrosis. Besides, Pre-MSCs exhibited better effects in inhibiting apoptosis and activating proliferation. The results of tracing experiments with CM-Dil-labeled cells confirmed that more cells migrated to the damaged liver in the Pre-MSC group. In terms of mechanism, the CXCR4 expression was significantly enhanced by IL-1β pretreatment, and an increased migration ability towards SDF-1 that could be reversed by AMD3100 was found in Pre-MSCs. CONCLUSION IL-1β pretreatment could enhance the homing ability of MSCs at least partially by increasing the expression of CXCR4 and further improve the efficacy of MSCs on ALF.
Collapse
Affiliation(s)
- He Nie
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Fangmei An
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Jie Mei
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China
| | - Cheng Yang
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Qiang Zhan
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Qinglin Zhang
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, China
| |
Collapse
|
8
|
Ou M, Zhang C, Chen J, Zhao S, Cui S, Tu J. Overexpression of MicroRNA-340-5p Inhibits Pulmonary Arterial Hypertension Induced by APE by Downregulating IL-1β and IL-6. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:542-554. [PMID: 32712318 PMCID: PMC7378273 DOI: 10.1016/j.omtn.2020.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/18/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal cardiovascular disease that could eventually result in right ventricular failure. Recently, the roles of microRNAs (miRNAs) in PAH have been highlighted. The present study aims to investigate the effects of miRNA (miR)-340-5p on PAH induced by acute pulmonary embolism (APE) and the underlying mechanisms. miR-340-5p was lowly expressed, whereas interleukin 1β (IL-1β) and IL-6 were highly expressed in plasma of APE-PAH patients as compared to normal human plasma. Subsequently, IL-1β and IL-6 were confirmed to be two target genes of miR-340-5p using a dual-luciferase reporter gene assay. By conducting overexpression and rescue experiments, overexpression of miR-340-5p was evidenced to inhibit proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) and inflammation via reducing IL-1β and IL-6 levels. Meanwhile, miR-340-5p led to the blocked nuclear factor κB (NF-κB) pathway with reduced NF-κB p65, matrix metalloproteinase 2 (MMP2), and MMP9 expression in PASMCs. Finally, the ameliorative effect of miR-340-5p on pathological lesions was further verified in rat models of APE-PAH. Altogether, overexpressed miR-340-5p inhibited the inflammatory response, proliferation, and migration of PASMCs by downregulating IL-1β and IL-6, thereby suppressing the progression of APE-PAH. miR-340-5p therefore holds promise as an anti-inflammatory therapeutic target.
Collapse
Affiliation(s)
- Minghui Ou
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao 266011, P.R. China
| | - Chuntang Zhang
- Department of Orthopedics, Shengli Oilfield Hospital of Dongying City, Dongying 257000, P.R. China
| | - Jing Chen
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao 266011, P.R. China
| | - Shibo Zhao
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao 266011, P.R. China
| | - Shichao Cui
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao 266011, P.R. China
| | - Jie Tu
- Science and Education Department, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, P.R. China.
| |
Collapse
|
9
|
Su L, Wang J, Huang J, Zhao Y, Jiang H, Li H. Suppresses of Astragalus Polysaccharide on E. coli-Induced Injured Intestinal Microvascular through TLR4-NF-κB Signal Pathways in Chickens. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2019. [DOI: 10.1590/1806-9061-2018-0945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- L Su
- Henan University of Technology, P. R. China
| | - J Wang
- Henan University of Technology, P. R. China
| | - J Huang
- Henan University of Technology, P. R. China
| | - Y Zhao
- Henan University of Technology, P. R. China
| | - H Jiang
- Henan University of Technology, P. R. China
| | - H Li
- Henan University of Technology, P. R. China
| |
Collapse
|
10
|
Functionally Improved Mesenchymal Stem Cells to Better Treat Myocardial Infarction. Stem Cells Int 2018; 2018:7045245. [PMID: 30622568 PMCID: PMC6286742 DOI: 10.1155/2018/7045245] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/10/2018] [Accepted: 09/30/2018] [Indexed: 12/14/2022] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of death worldwide. Mesenchymal stem cell (MSC) transplantation is considered a promising approach and has made significant progress in preclinical studies and clinical trials for treating MI. However, hurdles including poor survival, retention, homing, and differentiation capacity largely limit the therapeutic effect of transplanted MSCs. Many strategies such as preconditioning, genetic modification, cotransplantation with bioactive factors, and tissue engineering were developed to improve the survival and function of MSCs. On the other hand, optimizing the hostile transplantation microenvironment of the host myocardium is also of importance. Here, we review the modifications of MSCs as well as the host myocardium to improve the efficacy of MSC-based therapy against MI.
Collapse
|
11
|
Riccobono D, Nikovics K, François S, Favier AL, Jullien N, Schrock G, Scherthan H, Drouet M. First Insights Into the M2 Inflammatory Response After Adipose-Tissue-Derived Stem Cell Injections in Radiation-Injured Muscles. HEALTH PHYSICS 2018; 115:37-48. [PMID: 29787429 DOI: 10.1097/hp.0000000000000822] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The cutaneous radiation syndrome is the clinical consequence of local high-dose irradiation. It is characterized by extensive inflammation, necrosis, and poor revascularization of the skin, resulting in muscle inflammation and fibrosis. Based on these physiopathological processes, subcutaneous injections of adipose-tissue-derived stem/stromal cells have shown favorable effects on skin-wound healing in a minipig model of cutaneous radiation syndrome, in which muscle fibrosis persisted. Since fibrosis is mainly due to the inflammatory processes that often affect underlying tissues as well, the beneficial effects of intramuscular injections of adipose-tissue-derived stem/stromal cells on tissue recovery were evaluated. The polarization of the inflammatory response of irradiated muscle in a minipig model of cutaneous radiation syndrome was determined after acute local irradiation with 50 Gy gamma rays in a preliminary study (six minipigs). Analysis of the main inflammatory cytokines of the inflammatory response M1 (IL-1-beta and IL-6) and M2 (IL-10 and TGF-beta) by western blotting and in situ hybridization, as well as analysis of CD80/CD206 M1/M2 macrophage-specific markers by immunohistochemistry on minipig muscle samples, was performed 76 d after irradiation. The treatment of irradiated muscles with autologous adipose-tissue-derived stem/stromal cells led to an increase in IL-10 and TGF-beta, being associated with an increase in CD68+/CD206+ cells in this area. This highlights a polarization of M2 in the inflammatory response and indicates that adipose-tissue-derived stem/stromal cells may direct the irradiated tissues' inflammatory response towards a proregenerative outcome.
Collapse
Affiliation(s)
- Diane Riccobono
- Institut de Recherche Biomédicale des Armées (IRBA), Unité de Radiobiologie, Brétigny sur Orge Cedex, France
| | - Krisztina Nikovics
- Institut de Recherche Biomédicale des Armées (IRBA), Département des Services, Unité Imagerie, Brétigny sur Orge Cedex, France
| | - Sabine François
- Institut de Recherche Biomédicale des Armées (IRBA), Unité de Radiobiologie, Brétigny sur Orge Cedex, France
| | - Anne-Laure Favier
- Institut de Recherche Biomédicale des Armées (IRBA), Département des Services, Unité Imagerie, Brétigny sur Orge Cedex, France
| | - Nicolas Jullien
- Institut de Recherche Biomédicale des Armées (IRBA), Unité de Radiobiologie, Brétigny sur Orge Cedex, France
| | - Gerrit Schrock
- Institut für Radiobiologie der Bundeswehr, Neuherbergstraße 11, 80937 München, Germany
| | - Harry Scherthan
- Institut für Radiobiologie der Bundeswehr, Neuherbergstraße 11, 80937 München, Germany
| | - Michel Drouet
- Institut de Recherche Biomédicale des Armées (IRBA), Unité de Radiobiologie, Brétigny sur Orge Cedex, France
| |
Collapse
|
12
|
Gao X, Wei B, Deng Y, Huang YL, Wu W. Increased Mobilization of CD45+CD34+VLA-4+ Cells in Acute Viral Myocarditis Induced by Coxsackievirus B3. Cardiology 2017; 138:238-248. [PMID: 28866672 DOI: 10.1159/000477655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 05/22/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Bone marrow-derived cells (BMCs) have recently been identified to play a vital role in repairing damaged myocardium; however, it is not known whether or not mobilization of BMCs is involved in the pathogenesis of acute viral myocarditis (VMC). Thus, we analyzed the expression of CD45+CD34+VLA-4+ cells and vascular cell adhesion protein-1 (VCAM-1) in a murine model of acute VMC. METHODS Male BALB/c mice were intraperitoneally infected with coxsackievirus B3 to establish acute VMC. The frequency of CD45+CD34+VLA-4+ cells in the heart, peripheral blood, and bone marrow was examined by flow cytometry 3, 7, 14, and 28 days after injection. Cardiac VCAM-1 and pathology scores were determined by immunohistochemistry, and myocardial VCAM-1, IL-1β, and TNF-α were analyzed by RT-PCR and Western blot. RESULTS In mice with acute VMC, the CD45+CD34+VLA-4+ cell population in the heart was significantly increased by day 7 and then decreased; in contrast, the CD45+CD34+VLA-4+ cell population decreased in the bone marrow and peripheral blood by day 3 and then increased. High expression of VCAM-1 was detected in the heart in parallel with CD45+CD34+VLA-4+ cell expression. CONCLUSIONS In mice with acute VMC, VCAM-1-induced CD45+CD34+VLA-4+ cell mobilization into the injured heart is involved in the repair of injured myocardium.
Collapse
Affiliation(s)
- Xingcui Gao
- Department of Cardiology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | | | | | | | | |
Collapse
|
13
|
Karpov AA, Udalova DV, Pliss MG, Galagudza MM. Can the outcomes of mesenchymal stem cell-based therapy for myocardial infarction be improved? Providing weapons and armour to cells. Cell Prolif 2016; 50. [PMID: 27878916 DOI: 10.1111/cpr.12316] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/12/2016] [Indexed: 02/06/2023] Open
Abstract
Use of mesenchymal stem cell (MSC) transplantation after myocardial infarction (MI) has been found to have infarct-limiting effects in numerous experimental and clinical studies. However, recent meta-analyses of randomized clinical trials on MSC-based MI therapy have highlighted the need for improving its efficacy. There are two principal approaches for increasing therapeutic effect of MSCs: (i) preventing massive MSC death in ischaemic tissue and (ii) increasing production of cardioreparative growth factors and cytokines with transplanted MSCs. In this review, we aim to integrate our current understanding of genetic approaches that are used for modification of MSCs to enable their improved survival, engraftment, integration, proliferation and differentiation in the ischaemic heart. Genetic modification of MSCs resulting in increased secretion of paracrine factors has also been discussed. In addition, data on MSC preconditioning with physical, chemical and pharmacological factors prior to transplantation are summarized. MSC seeding on three-dimensional polymeric scaffolds facilitates formation of both intercellular connections and contacts between cells and the extracellular matrix, thereby enhancing cell viability and function. Use of genetic and non-genetic approaches to modify MSC function holds great promise for regenerative therapy of myocardial ischaemic injury.
Collapse
Affiliation(s)
- Andrey A Karpov
- Institute of Experimental Medicine, Federal Almazov North-West Medical Research Centre, St Petersburg, Russia.,Department of Pathophysiology, First Pavlov State Medical University of Saint Petersburg, St Petersburg, Russia
| | - Daria V Udalova
- Institute of Experimental Medicine, Federal Almazov North-West Medical Research Centre, St Petersburg, Russia
| | - Michael G Pliss
- Institute of Experimental Medicine, Federal Almazov North-West Medical Research Centre, St Petersburg, Russia
| | - Michael M Galagudza
- Institute of Experimental Medicine, Federal Almazov North-West Medical Research Centre, St Petersburg, Russia.,ITMO University, St Petersburg, Russia
| |
Collapse
|
14
|
Du WJ, Chi Y, Yang ZX, Li ZJ, Cui JJ, Song BQ, Li X, Yang SG, Han ZB, Han ZC. Heterogeneity of proangiogenic features in mesenchymal stem cells derived from bone marrow, adipose tissue, umbilical cord, and placenta. Stem Cell Res Ther 2016; 7:163. [PMID: 27832825 PMCID: PMC5103372 DOI: 10.1186/s13287-016-0418-9] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/06/2016] [Accepted: 10/04/2016] [Indexed: 01/08/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) have been widely proven effective for therapeutic angiogenesis in ischemia animal models as well as clinical vascular diseases. Because of the invasive method, limited resources, and aging problems of adult tissue-derived MSCs, more perinatal tissue-derived MSCs have been isolated and studied as promising substitutable MSCs for cell transplantation. However, fewer studies have comparatively studied the angiogenic efficacy of MSCs derived from different tissues sources. Here, we evaluated whether the in-situ environment would affect the angiogenic potential of MSCs. Methods We harvested MSCs from adult bone marrow (BMSCs), adipose tissue (AMSCs), perinatal umbilical cord (UMSCs), and placental chorionic villi (PMSCs), and studied their “MSC identity” by flow cytometry and in-vitro trilineage differentiation assay. Then we comparatively studied their endothelial differentiation capabilities and paracrine actions side by side in vitro. Results Our data showed that UMSCs and PMSCs fitted well with the minimum standard of MSCs as well as BMSCs and AMSCs. Interestingly, we found that MSCs regardless of their tissue origins could develop similar endothelial-relevant functions in vitro, including producing eNOS and uptaking ac-LDL during endothelial differentiation in spite of their feeble expression of endothelial-related genes and proteins. Additionally, we surprisingly found that BMSCs and PMSCs could directly form tubular structures in vitro on Matrigel and their conditioned medium showed significant proangiogenic bioactivities on endothelial cells in vitro compared with those of AMSCs and UMSCs. Besides, several angiogenic genes were upregulated in BMSCs and PMSCs in comparison with AMSCs and UMSCs. Moreover, enzyme-linked immunosorbent assay further confirmed that BMSCs secreted much more VEGF, and PMSCs secreted much more HGF and PGE2. Conclusions Our study demonstrated the heterogeneous proangiogenic properties of MSCs derived from different tissue origins, and the in vivo isolated environment might contribute to these differences. Our study suggested that MSCs derived from bone marrow and placental chorionic villi might be preferred in clinical application for therapeutic angiogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0418-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen Jing Du
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Science & Peking Union Medical College, No. 288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Ying Chi
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Science & Peking Union Medical College, No. 288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Zhou Xin Yang
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Science & Peking Union Medical College, No. 288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Zong Jin Li
- Beijing Institute of Health and Stem Cells, No. 1, Kangding Road, BDA, Beijing, 100176, China
| | - Jun Jie Cui
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Science & Peking Union Medical College, No. 288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Bao Quan Song
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Science & Peking Union Medical College, No. 288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Xue Li
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Science & Peking Union Medical College, No. 288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Shao Guang Yang
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Science & Peking Union Medical College, No. 288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Zhi Bo Han
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Science & Peking Union Medical College, No. 288, Nanjing Road, Heping District, Tianjin, 300020, China.
| | - Zhong Chao Han
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Science & Peking Union Medical College, No. 288, Nanjing Road, Heping District, Tianjin, 300020, China. .,Beijing Institute of Health and Stem Cells, No. 1, Kangding Road, BDA, Beijing, 100176, China.
| |
Collapse
|
15
|
Yang Z, Concannon J, Ng KS, Seyb K, Mortensen LJ, Ranganath S, Gu F, Levy O, Tong Z, Martyn K, Zhao W, Lin CP, Glicksman MA, Karp JM. Tetrandrine identified in a small molecule screen to activate mesenchymal stem cells for enhanced immunomodulation. Sci Rep 2016; 6:30263. [PMID: 27457881 PMCID: PMC4960598 DOI: 10.1038/srep30263] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 06/24/2016] [Indexed: 12/29/2022] Open
Abstract
Pre-treatment or priming of mesenchymal stem cells (MSC) prior to transplantation can significantly augment the immunosuppressive effect of MSC-based therapies. In this study, we screened a library of 1402 FDA-approved bioactive compounds to prime MSC. We identified tetrandrine as a potential hit that activates the secretion of prostaglandin E2 (PGE2), a potent immunosuppressive agent, by MSC. Tetrandrine increased MSC PGE2 secretion through the NF-κB/COX-2 signaling pathway. When co-cultured with mouse macrophages (RAW264.7), tetrandrine-primed MSC attenuated the level of TNF-α secreted by RAW264.7. Furthermore, systemic transplantation of primed MSC into a mouse ear skin inflammation model significantly reduced the level of TNF-α in the inflamed ear, compared to unprimed cells. Screening of small molecules to pre-condition cells prior to transplantation represents a promising strategy to boost the therapeutic potential of cell therapy.
Collapse
Affiliation(s)
- Zijiang Yang
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, US.,Advanced Industrial Technology Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - John Concannon
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, US
| | - Kelvin S Ng
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US
| | - Kathleen Seyb
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, US
| | - Luke J Mortensen
- Regenerative Bioscience Center, Department of Animal and Dairy Science, and College of Engineering, University of Georgia, Athens, GA, US
| | - Sudhir Ranganath
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US.,Department of Chemical Engineering, Siddaganga Institute of Technology, Tumkur, India
| | - Fangqi Gu
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US
| | - Oren Levy
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US
| | - Zhixiang Tong
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US
| | - Keir Martyn
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US
| | - Weian Zhao
- Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center and Chao Family Comprehensive Cancer Center, Department of Biomedical Engineering, and Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA, US
| | - Charles P Lin
- Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, US
| | - Marcie A Glicksman
- Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, US
| | - Jeffrey M Karp
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, US.,Department of Medicine, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US.,Harvard Stem Cell Institute, Cambridge, MA, US
| |
Collapse
|
16
|
Singh A, Singh A, Sen D. Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010-2015). Stem Cell Res Ther 2016; 7:82. [PMID: 27259550 PMCID: PMC4893234 DOI: 10.1186/s13287-016-0341-0] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells have been used for cardiovascular regenerative therapy for decades. These cells have been established as one of the potential therapeutic agents, following several tests in animal models and clinical trials. In the process, various sources of mesenchymal stem cells have been identified which help in cardiac regeneration by either revitalizing the cardiac stem cells or revascularizing the arteries and veins of the heart. Although mesenchymal cell therapy has achieved considerable admiration, some challenges still remain that need to be overcome in order to establish it as a successful technique. This in-depth review is an attempt to summarize the major sources of mesenchymal stem cells involved in myocardial regeneration, the significant mechanisms involved in the process with a focus on studies (human and animal) conducted in the last 6 years and the challenges that remain to be addressed.
Collapse
Affiliation(s)
- Aastha Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Abhishek Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Dwaipayan Sen
- School of Bio Sciences and Technology, VIT University, Vellore, India. .,Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
17
|
Du W, Li X, Chi Y, Ma F, Li Z, Yang S, Song B, Cui J, Ma T, Li J, Tian J, Yang Z, Feng X, Chen F, Lu S, Liang L, Han ZB, Han ZC. VCAM-1+ placenta chorionic villi-derived mesenchymal stem cells display potent pro-angiogenic activity. Stem Cell Res Ther 2016; 7:49. [PMID: 27044487 PMCID: PMC4820943 DOI: 10.1186/s13287-016-0297-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/16/2016] [Accepted: 02/22/2016] [Indexed: 01/25/2023] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) represent a heterogeneous cell population that is promising for regenerative medicine. The present study was designed to assess whether VCAM-1 can be used as a marker of MSC subpopulation with superior angiogenic potential. Methods MSCs were isolated from placenta chorionic villi (CV). The VCAM-1+/− CV-MSCs population were separated by Flow Cytometry and subjected to a comparative analysis for their angiogenic properties including angiogenic genes expression, vasculo-angiogenic abilities on Matrigel in vitro and in vivo, angiogenic paracrine activities, cytokine array, and therapeutic angiogenesis in vascular ischemic diseases. Results Angiogenic genes, including HGF, ANG, IL8, IL6, VEGF-A, TGFβ, MMP2 and bFGF, were up-regulated in VCAM-1+CV-MSCs. Consistently, angiogenic cytokines especially HGF, IL8, angiogenin, angiopoitin-2, μPAR, CXCL1, IL-1β, IL-1α, CSF2, CSF3, MCP-3, CTACK, and OPG were found to be significantly increased in VCAM-1+ CV-MSCs. Moreover, VCAM-1+CV-MSCs showed remarkable vasculo-angiogenic abilities by angiogenesis analysis with Matrigel in vitro and in vivo and the conditioned medium of VCAM-1+ CV-MSCs exerted markedly pro-proliferative and pro-migratory effects on endothelial cells compared to VCAM-1−CV-MSCs. Finally, transplantation of VCAM-1+CV-MSCs into the ischemic hind limb of BALB/c nude mice resulted in a significantly functional improvement in comparison with VCAM-1−CV-MSCs transplantation. Conclusions VCAM-1+CV-MSCs possessed a favorable angiogenic paracrine activity and displayed therapeutic efficacy on hindlimb ischemia. Our results suggested that VCAM-1+CV-MSCs may represent an important subpopulation of MSC for efficient therapeutic angiogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0297-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenjing Du
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, No.288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Xue Li
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, No.288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Ying Chi
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, No.288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Fengxia Ma
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, No.288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Zongjin Li
- Beijing Institute of Health and Stem Cells, No.1 Kangding Road, BDA, Beijing, 100176, China
| | - Shaoguang Yang
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, No.288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Baoquan Song
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, No.288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Junjie Cui
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, No.288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Tao Ma
- National Engineering Research Center of Cell Products, No.80, Fourth Avenue, TEDA, Tianjin, 300457, China
| | - Juanjuan Li
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, No.288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Jianjian Tian
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, No.288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Zhouxin Yang
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, No.288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Xiaoming Feng
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, No.288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Fang Chen
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, No.288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Shihong Lu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, No.288, Nanjing Road, Heping District, Tianjin, 300020, China
| | - Lu Liang
- Beijing Institute of Health and Stem Cells, No.1 Kangding Road, BDA, Beijing, 100176, China
| | - Zhi-Bo Han
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, No.288, Nanjing Road, Heping District, Tianjin, 300020, China.
| | - Zhong-Chao Han
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, No.288, Nanjing Road, Heping District, Tianjin, 300020, China. .,Beijing Institute of Health and Stem Cells, No.1 Kangding Road, BDA, Beijing, 100176, China. .,National Engineering Research Center of Cell Products, No.80, Fourth Avenue, TEDA, Tianjin, 300457, China.
| |
Collapse
|
18
|
Coulson-Thomas VJ, Coulson-Thomas YM, Gesteira TF, Kao WWY. Extrinsic and Intrinsic Mechanisms by Which Mesenchymal Stem Cells Suppress the Immune System. Ocul Surf 2016; 14:121-34. [PMID: 26804815 DOI: 10.1016/j.jtos.2015.11.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 11/12/2015] [Accepted: 11/23/2015] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are a group of fibroblast-like multipotent mesenchymal stromal cells that have the ability to differentiate into osteoblasts, adipocytes, and chondrocytes. Recent studies have demonstrated that MSCs possess a unique ability to exert suppressive and regulatory effects on both adaptive and innate immunity in an autologous and allogeneic manner. A vital step in stem cell transplantation is overcoming the potential graft-versus-host disease, which is a limiting factor to transplantation success. Given that MSCs attain powerful differentiation capabilities and also present immunosuppressive properties, which enable them to survive host immune rejection, MSCs are of great interest. Due to their ability to differentiate into different cell types and to suppress and modulate the immune system, MSCs are being developed for treating a plethora of diseases, including immune disorders. Moreover, in recent years, MSCs have been genetically engineered to treat and sometimes even cure some diseases, and the use of MSCs for cell therapy presents new perspectives for overcoming tissue rejection. In this review, we discuss the potential extrinsic and intrinsic mechanisms that underlie MSCs' unique ability to modulate inflammation, and both innate and adaptive immunity.
Collapse
Affiliation(s)
- Vivien J Coulson-Thomas
- Department of Ophthalmology, University of Cincinnati, Ohio, USA; John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
| | | | | | - Winston W-Y Kao
- Department of Ophthalmology, University of Cincinnati, Ohio, USA.
| |
Collapse
|
19
|
Lee MW, Ryu S, Kim DS, Sung KW, Koo HH, Yoo KH. Strategies to improve the immunosuppressive properties of human mesenchymal stem cells. Stem Cell Res Ther 2015; 6:179. [PMID: 26445096 PMCID: PMC4596374 DOI: 10.1186/s13287-015-0178-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are of particular interest for the treatment of immune-related diseases because of their immunosuppressive capacities. However, few clinical trials of MSCs have yielded satisfactory results. A number of clinical trials using MSCs are currently in progress worldwide. Unfortunately, protocols and methods, including optimized culture conditions for the harvest of MSCs, have not been standardized. In this regard, complications in the ex vivo expansion of MSCs and MSC heterogeneity have been implicated in the failure of clinical trials. In this review, potential strategies to obtain MSCs with improved immunosuppressive properties and the potential roles of specific immunomodulatory genes, which are differentially upregulated in certain culture conditions, will be discussed.
Collapse
Affiliation(s)
- Myoung Woo Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea
| | - Somi Ryu
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea
| | - Dae Seong Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea
| | - Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea.
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea. .,Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, 50 Irwon-Dong, Gangnam-Gu, Seoul, 135-710, Korea.
| |
Collapse
|