1
|
Azadian Z, Hosseini S, Dizjikan ZP, Kazemi J, Marzouni ET, Wang PY, Alipour A, Shahsavarani H. Computational and in vitro validation of cardiogenic induction of quercetin on adipose-derived mesenchymal stromal cells through the inhibition of Wnt and non-Smad-dependent TGF-β pathways. J Cell Biochem 2021; 123:450-468. [PMID: 34825407 DOI: 10.1002/jcb.30189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/25/2021] [Accepted: 11/13/2021] [Indexed: 12/11/2022]
Abstract
Exploiting human mesenchymal stem cells (hMSCs) was proposed as a promising therapeutic approach for cardiovascular disease due to their capacity to differentiate into cardiac cells. Though modulation of the intracellular signaling pathways dominantly WNT/β catenin and transforming growth factor-β (TGF-β) have been reported to promote differentiation of hMSCs into cardiomyocytes in the prevailing literature, a safe and reproducible system for their clinical application has not yet turned into reality. In the present study, the molecular docking-based strategy was first applied for evaluating the potency of some natural phenolic compounds in the modulation of Wnt and TGF-β signaling pathways using a vital class of crystallographic protein structures of WNT signaling regulators such as Frizzled, Disheveled, GSK3-β, β-catenin, LRP 5/6 extracellular domain, Tankyrase and their variety of active pockets. Then, the impacts of plant-derived chemical compounds on the regulation of the relevant signals for the differentiation of hMSCs into the definitive mesoderm lineage and cardiac progenitors were assessed in vitro. Data obtained revealed the synergistic activity of Wnt and TGF-β superfamily to direct cardiac differentiation in human cardiogenesis by comparing cardiac gene expression in the presence and absence of the TGF-β inhibitors. We found that the inhibitory effect of canonical Wnt/β-catenin is sufficient to cause proper cardiomyocyte differentiation, but the TGF-β pathway plays a vital role in enhancing the expression of the cardiomyocyte-specific marker (cTnT). It was found that quercetin, a p38MAPK inhibitor with the high energy dock to the active pocket of Wnt receptors, promotes cardiac differentiation via the inhibition of both Wnt and non-Smad TGF-β pathways. Altogether, data presented here can contribute to the development of a feasible and efficient cardiac differentiation protocol as an "off-the-shelf" therapeutic source using novel natural agents for cardiac repair or regeneration.
Collapse
Affiliation(s)
- Zahra Azadian
- Department of Cell and Molecular Sciences, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.,Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Saadi Hosseini
- Department of Cell and Molecular Sciences, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.,Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Zohre Panahi Dizjikan
- Department of Cell and Molecular Sciences, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Javad Kazemi
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Eisa Tahmasbpour Marzouni
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Peng-Yuan Wang
- Stem Cell Bioengineering Lab, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Atefeh Alipour
- Department of Nanobiotechnology, Pasteur institute of Iran, Tehran, Iran
| | - Hosein Shahsavarani
- Department of Cell and Molecular Sciences, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.,Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Plasticity of patient-matched normal mammary epithelial cells is dependent on autologous adipose-derived stem cells. Sci Rep 2019; 9:10722. [PMID: 31341222 PMCID: PMC6656715 DOI: 10.1038/s41598-019-47224-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/11/2019] [Indexed: 02/08/2023] Open
Abstract
Due to the increasing clinical application of adipose-derived stem cells (ADSC), e.g. lipotransfer for breast reconstruction, this study aimed to gain novel insights regarding ADSC influence on breast tissue remodeling and determine patient-dependent factors affecting lipotransfer as well as begin to address its oncological risks. The ADSC secretome was analyzed from five normal breast reduction patients and contained elevated levels of growth factors, cytokines and proteins mediating invasion. ADSC/ADSC secretomes were tested for their influence on the function of primary mammary epithelial cells, and tumor epithelial cells using cell culture assays. ADSC/ADSC secretomes significantly stimulated proliferation, transmigration and 3D-invasion of primary normal and tumor epithelial cells. IL-6 significantly induced an EMT and invasion. The ADSC secretome significantly upregulated normal epithelial cell gene expression including MMPs and ECM receptors. Our study supports that ADSC and its secretome promote favorable conditions for normal breast tissue remodeling by changing the microenvironment. and may also be important regarding residual breast cancer cells following surgery.
Collapse
|
3
|
Li DQ, Lu GM, Liang YD, Liang ZJ, Huang MH, Peng QL, Zou DH, Gu RH, Xu FT, Gao H, Chen ZD, Chi GY, Wei ZH, Chen L, Li HM. CD54+ rabbit adipose-derived stem cells overexpressing HIF-1α facilitate vascularized fat flap regeneration. Oncotarget 2018; 8:46875-46890. [PMID: 28423354 PMCID: PMC5564529 DOI: 10.18632/oncotarget.16777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/22/2017] [Indexed: 01/22/2023] Open
Abstract
Fat flap transplantation is frequently performed in patients suffering from soft tissue defects resulting from disease or trauma. This study explored the feasibility of constructing vascularized fat flaps using rabbit adipose-derived stem cells (rASCs) and collagen scaffolds in a rabbit model. We evaluated rASCs proliferation, paracrine function, adipogenesis, vascularization, and CD54 expression, with or without HIF-1α transfection in vitro and in vivo. We observed that adipogenic differentiation potential was greater in rASCs with high CD54 expression (CD54+rASCs) than in those with low expression (CD54–rASCs), both in vitro and in vivo. HIF-1α overexpression not only augmented this effect, but also enhanced cell proliferation and paracrine function in vitro. We also demonstrated that HIF-1α-transfected CD54+rASCs showed enhanced paracrine function and adipogenic capacity, and that paracrine function increases expression of angiogenesis-related markers. Thus, CD54+rASCs overexpressing HIF-1α enhanced large volume vascularized fat flap regeneration in rabbits, suggesting CD54 may be an ideal candidate marker for ASCs adipogenic differentiation.
Collapse
Affiliation(s)
- De-Quan Li
- Department of Mammary Glands Surgery, The Third Hospital of Nanchang City, Nanchang 330009, China
| | - Guan-Ming Lu
- Department of Glands Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Yi-Dan Liang
- Central Laboratory of Medical Science, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning 530022, China
| | - Zhi-Jie Liang
- Department of Mammary Glands Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning 530022, China
| | - Min-Hong Huang
- Department of Mammary Glands Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning 530022, China
| | - Qi-Liu Peng
- Central Laboratory of Medical Science, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning 530022, China
| | - Dong-Hua Zou
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning 530022, China
| | - Rong-He Gu
- Department of Orthopedic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning 530022, China
| | - Fang-Tian Xu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Hui Gao
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Zhen-Dong Chen
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Guang-Yi Chi
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning 530022, China
| | - Zhong-Heng Wei
- Department of Glands Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Li Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Hong-Mian Li
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning 530022, China
| |
Collapse
|
4
|
Ginsenoside Rg1 and platelet-rich fibrin enhance human breast adipose-derived stem cell function for soft tissue regeneration. Oncotarget 2018; 7:35390-403. [PMID: 27191987 PMCID: PMC5085237 DOI: 10.18632/oncotarget.9360] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/11/2016] [Indexed: 02/01/2023] Open
Abstract
Adipose-derived stem cells (ASCs) can be used to repair soft tissue defects, wounds, burns, and scars and to regenerate various damaged tissues. The cell differentiation capacity of ASCs is crucial for engineered adipose tissue regeneration in reconstructive and plastic surgery. We previously reported that ginsenoside Rg1 (G-Rg1 or Rg1) promotes proliferation and differentiation of ASCs in vitro and in vivio. Here we show that both G-Rg1 and platelet-rich fibrin (PRF) improve the proliferation, differentiation, and soft tissue regeneration capacity of human breast adipose-derived stem cells (HBASCs) on collagen type I sponge scaffolds in vitro and in vivo. Three months after transplantation, tissue wet weight, adipocyte number, intracellular lipid, microvessel density, and gene and protein expression of VEGF, HIF-1α, and PPARγ were higher in both G-Rg1- and PRF-treated HBASCs than in control grafts. More extensive new adipose tissue formation was evident after treatment with G-Rg1 or PRF. In summary, G-Rg1 and/or PRF co-administration improves the function of HBASCs for soft tissue regeneration engineering.
Collapse
|
5
|
Wei H, Gu SX, Liang YD, Liang ZJ, Chen H, Zhu MG, Xu FT, He N, Wei XJ, Li HM. Nanofat-derived stem cells with platelet-rich fibrin improve facial contour remodeling and skin rejuvenation after autologous structural fat transplantation. Oncotarget 2017; 8:68542-68556. [PMID: 28978136 PMCID: PMC5620276 DOI: 10.18632/oncotarget.19721] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/19/2017] [Indexed: 12/28/2022] Open
Abstract
Traditional autologous fat transplantation is a common surgical procedure for treating facial soft tissue depression and skin aging. However, the transplanted fat is easily absorbed, reducing the long-term efficacy of the procedure. Here, we examined the efficacy of nanofat-assisted autologous fat structural transplantation. Nanofat-derived stem cells (NFSCs) were isolated, mechanically emulsified, cultured, and characterized. Platelet-rich fibrin (PRF) enhanced proliferation and adipogenic differentiation of NFSCs in vitro. We then compared 62 test group patients with soft tissue depression or signs of aging who underwent combined nanofat, PRF, and autologous fat structural transplantation to control patients (77 cases) who underwent traditional autologous fat transplantation. Facial soft tissue depression symptoms and skin texture were improved to a greater extent after nanofat transplants than after traditional transplants, and the nanofat group had an overall satisfaction rate above 90%. These data suggest that NFSCs function similarly to mesenchymal stem cells and share many of the biological characteristics of traditional fat stem cell cultures. Transplants that combine newly-isolated nanofat, which has a rich stromal vascular fraction (SVF), with PRF and autologous structural fat granules may therefore be a safe, highly-effective, and long-lasting method for remodeling facial contours and rejuvenating the skin.
Collapse
Affiliation(s)
- Hua Wei
- Department of Endocrinology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Shi-Xing Gu
- Department of Burns & Plastic Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Yi-Dan Liang
- Central Laboratory of Medical Science, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning 530022, China
| | - Zhi-Jie Liang
- Department of Gland Surgery, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning 530022, China
| | - Hai Chen
- Department of Gland Surgery, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning 530022, China
| | - Mao-Guang Zhu
- Department of Gland Surgery, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning 530022, China
| | - Fang-Tian Xu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Ning He
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning 530022, China
| | - Xiao-Juan Wei
- Department of Urinary Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Hong-Mian Li
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning 530022, China
| |
Collapse
|