1
|
Keyvani V, Mollazadeh S, Riahi E, Mahmoudian RA, Anvari K, Avan A. Nanotechnological Advances in the Diagnosis of Gynecological Cancers and Nanotheranostics. Curr Pharm Des 2024; 30:2619-2630. [PMID: 39021196 DOI: 10.2174/0113816128317605240628063731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024]
Abstract
Gynecological cancers are one of the main causes of female mortality worldwide. Despite the various strategies to reduce mortality and improve quality of life, there are still many deficiencies in the diagnosis and treatment of gynecological cancers. One of the important steps to ensure optimal cancer treatment is the early detection of cancer cells and the use of drugs to reduce toxicity. Due to the increase in systemic toxicity and resistance to traditional and conventional diagnostic methods, new strategies, including nanotechnology, are being used to improve diagnosis and reduce the severity of the disease. Nanoparticles (NPs) provide exciting opportunities to improve Gynecological Cancers (GCs) diagnosis, particularly in the initial stages. In biomedical investigations and clinical settings, NPs can be used to increase the sensitivity and specificity of recognition and/or imaging of GCs with the help of their molecular and cellular processes. To design more efficient diagnostic NPs for gynecological cancer cells or tissues, determining the specific biomarkers is of great importance. NP-based imaging agents are another solution to trace cancer cells. This review highlights the potential of some NP-based diagnostic techniques in GC detection, which could be translated to clinical settings to improve patient care.
Collapse
Affiliation(s)
- Vahideh Keyvani
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Espanta Riahi
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran
- Department of Biology, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | | | - Kazem Anvari
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane 4059, Australia
| |
Collapse
|
2
|
Ling N, Liu H, Guo J, Liang Z, Zhang Y, Li H, Wu H, Xie T, Yuan Y, Li X, Peng M, Wei X, Liang L, Liu J, Wu W, Ye M. Generation of DNA Aptamers with Functional Activity in Mammalian Cells by Mimicking Retroviruses. Anal Chem 2023. [PMID: 37327388 DOI: 10.1021/acs.analchem.3c00387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
DNA aptamers are single-stranded DNA oligonucleotide sequences that bind to specific targets with high affinity. Currently, DNA aptamers can be produced only by in vitro synthesis. It is difficult for DNA aptamers to have a sustained impact on intracellular protein activity, which limits their clinical application. In this study, we developed a DNA aptamer expression system to generate DNA aptamers with functional activity in mammalian cells by mimicking retroviruses. Using this system, DNA aptamers targeting intracellular Ras (Ra1) and membrane-bound CD71 (XQ2) were successfully generated in cells. In particular, the expressed Ra1 not only specifically bound to the intracellular Ras protein but also inhibited the phosphorylation of downstream ERK1/2 and AKT. Furthermore, by inserting the DNA aptamer expression system for Ra1 into a lentivirus vector, the system can be delivered into cells and stably produce Ra1 over time, resulting in the inhibition of lung cancer cell proliferation. Therefore, our study provides a novel strategy for the intracellular generation of DNA aptamers with functional activity and opens a new avenue for the clinical application of intracellular DNA aptamers in disease treatment.
Collapse
Affiliation(s)
- Neng Ling
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Huiming Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Junxiao Guo
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Zhouliang Liang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yibin Zhang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hui Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Hui Wu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Tiantian Xie
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yijun Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Xiahui Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Menglan Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Xianhua Wei
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Long Liang
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Jing Liu
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Wencan Wu
- The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
3
|
Assays to Estimate the Binding Affinity of Aptamers. Talanta 2022; 238:122971. [PMID: 34857318 DOI: 10.1016/j.talanta.2021.122971] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023]
Abstract
Aptamers have become coming-of-age molecular recognition elements in both diagnostic and therapeutic applications. Generated by SELEX, the 'quality control' of aptamers, which involves the validation of their binding affinity against their respective targets is pivotal to ascertain their potency prior to use in any downstream assays or applications. Several aptamers have been isolated thus far, however, the usage of inappropriate validation assays renders some of these aptamers dubitable in terms of their binding capabilities. Driven by this need, we provide an up-to-date critical review of the various strategies used to determine the aptamer-target binding affinity with the aim of providing researchers a better comprehension of the different analytical approaches in respect to the molecular properties of aptamers and their intended targets. The techniques reported have been classified as label-based techniques such as fluorescence intensity, fluorescence anisotropy, filter-binding assays, gel shift assays, ELISA; and label-free techniques such as UV-Vis spectroscopy, circular dichroism, isothermal titration calorimetry, native electrospray ionization-mass spectrometry, quartz crystal microbalance, surface plasmon resonance, NECEEM, backscattering interferometry, capillary electrophoresis, HPLC, and nanoparticle aggregation assays. Hybrid strategies combining the characteristics of both categories such as microscale thermophoresis have been also additionally emphasized. The fundamental principles, complexity, benefits, and challenges under each technique are elaborated in detail.
Collapse
|
4
|
Şener BB, Yiğit D, Bayraç AT, Bayraç C. Inhibition of cell migration and invasion by ICAM-1 binding DNA aptamers. Anal Biochem 2021; 628:114262. [PMID: 34038704 DOI: 10.1016/j.ab.2021.114262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Cancer is the second leading cause of death worldwide and most of the cancer-related deaths result from metastasis. As expressed on the surface of various cancer cell types, intercellular adhesion molecule-1 (ICAM-1) has been shown to play a role in the attachment, invasion and migration of tumor cells. In this study, DNA aptamers were generated against ICAM-1 by cell-SELEX and protein SELEX method using ICAM-1(+) CHO-ICAM-1 cells and ICAM-1 protein, respectively. The pools obtained at the end of the 10th round of both SELEX were sequenced and the most enriched sequences were characterized for their binding behaviors and affinities to ICAM-1(+) CHO-ICAM-1 and ICAM-1(-) MIA PaCa-2 cells. Moreover, the inhibition abilities of sequences on migration and invasion were measured. The seven aptamer sequences were obtained selectively binding to CHO-ICAM-1 cells with Kd values in the ranging from 13.8 to 47.1 nM. Four of these aptamers showed inhibition in both migration and invasion of CHO-ICAM-1 cells at least 61%. All these results suggested that these aptamers have potential to detect specifically ICAM-1 expressing tumor cells and inhibit migration and invasion by blocking ICAM-1 related interactions of circulating tumor cells.
Collapse
Affiliation(s)
- Berke Bilgenur Şener
- Department of Bioengineering, Karamanoğlu Mehmetbey University, Karaman, Turkey.
| | - Deniz Yiğit
- Department of Bioengineering, Karamanoğlu Mehmetbey University, Karaman, Turkey
| | | | - Ceren Bayraç
- Department of Bioengineering, Karamanoğlu Mehmetbey University, Karaman, Turkey
| |
Collapse
|
5
|
Ma X, Lakshmipriya T, Gopinath SCB. Recent Advances in Identifying Biomarkers and High-Affinity Aptamers for Gynecologic Cancers Diagnosis and Therapy. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:5426974. [PMID: 31583159 PMCID: PMC6754908 DOI: 10.1155/2019/5426974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/04/2019] [Accepted: 08/21/2019] [Indexed: 05/28/2023]
Abstract
Cancer is the uncontrollable abnormal division of cell growth, caused due to the varied reasons. Cancer can be expressed in any part of the body, and it is one of the death-causing diseases. Human reproductive organs are commonly damaged by cancer. In particular, the women reproductive system is affected by various cancers including ovarian, cervical, endometrial, vaginal, fallopian tube, and vulvar cancers. Identifying these cancers at earlier stages prevents the damage to the organs. Aptamer is the potential probe that can identify these cancers. Aptamer is an artificial antibody selected from the randomized library of molecules and has a high binding affinity to the target biomarker. Targeting cancers in the reproductive organs using aptamers showed an excellent efficiency of detection compared to other probes. Different aptamers have been generated against the gynaecological cancer biomarkers, which include HE4, CA125, VEGF, OCCA (for ovarian cancer), EGFR, FGFR1, K-ras (for endometrial cancer), HPV E-16, HPV E-7, HPV E-6, tyrosine, and kinase (for cervical cancer), which help to identify the cancers in woman reproductive organs. In this overview, the biomarkers for gynecologic cancers and the relevant diagnosing systems generated using the specific aptamers are discussed. Furthermore, the therapeutic applications of aptamer with gynaecological cancers are narrated.
Collapse
Affiliation(s)
- Xiaoqun Ma
- Deparment of Gynecology, Taian City Central Hospital, Taian, Shandong 271000, China
| | - Thangavel Lakshmipriya
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
| | - Subash C. B. Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
- School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| |
Collapse
|