1
|
González-Montero J, Burotto M, Valenzuela G, Mateluna D, Buen-Abad F, Toro J, Barajas O, Marcelain K. Classification of patients with metastatic colorectal cancer into consensus molecular subtypes into real-world: A pilot study. World J Clin Oncol 2023; 14:409-419. [PMID: 37970108 PMCID: PMC10631348 DOI: 10.5306/wjco.v14.i10.409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Colorectal cancer is a complex disease with high mortality rates. Over time, the treatment of metastatic colorectal cancer (mCRC) has gradually improved due to the development of modern chemotherapy and targeted therapy regimens. However, due to the inherent heterogeneity of this condition, identifying reliable predictive biomarkers for targeted therapies remains challenging. A recent promising classification system-the consensus molecular subtype (CMS) system-offers the potential to categorize mCRC patients based on their unique biological and molecular characteristics. Four distinct CMS categories have been defined: immune (CMS1), canonical (CMS2), metabolic (CMS3), and mesenchymal (CMS4). Nevertheless, there is currently no standardized protocol for accurately classifying patients into CMS categories. To address this challenge, reverse transcription polymerase chain reaction (RT-qPCR) and next-generation genomic sequencing (NGS) techniques may hold promise for precisely classifying mCRC patients into their CMSs. AIM To investigate if mCRC patients can be classified into CMS categories using a standardized molecular biology workflow. METHODS This observational study was conducted at the University of Chile Clinical Hospital and included patients with unresectable mCRC who were undergoing systemic treatment with chemotherapy and/or targeted therapy. Molecular biology techniques were employed to analyse primary tumour samples from these patients. RT-qPCR was utilized to assess the expression of genes associated with fibrosis (TGF-β and β-catenin) and cell growth pathways (c-MYC). NGS using a 25-gene panel (TumorSec) was performed to identify specific genomic mutations. The patients were then classified into one of the four CMS categories according to the clinical consensus of a Tumour Board. Informed consent was obtained from all the patients prior to their participation in this study. All techniques were conducted at University of Chile. RESULTS Twenty-six patients were studied with the techniques and then evaluated by the Tumour Board to determine the specific CMS. Among them, 23% (n = 6), 19% (n = 5), 31% (n = 8), and 19% (n = 5) were classified as CMS1, CMS2, CMS3, and CMS4, respectively. Additionally, 8% of patients (n = 2) could not be classified into any of the four CMS categories. The median overall survival of the total sample was 28 mo, and for CMS1, CMS2, CMS3 and CMS4 it was 11, 20, 30 and 45 mo respectively, with no statistically significant differences between groups. CONCLUSION A molecular biology workflow and clinical consensus analysis can be used to accurately classify mCRC patients. This classification process, which divides patients into the four CMS categories, holds significant potential for improving research strategies and targeted therapies tailored to the specific characteristics of mCRC.
Collapse
Affiliation(s)
- Jaime González-Montero
- Bradford Hill Clinical Research Center, Santiago 8420383, Chile
- Basic and Clinical Oncology Department, University of Chile, Santiago 8380453, Chile
| | | | - Guillermo Valenzuela
- Basic and Clinical Oncology Department, University of Chile, Santiago 8380453, Chile
| | - Debora Mateluna
- Basic and Clinical Oncology Department, University of Chile, Santiago 8380453, Chile
| | - Florencia Buen-Abad
- Basic and Clinical Oncology Department, University of Chile, Santiago 8380453, Chile
| | - Jessica Toro
- Basic and Clinical Oncology Department, University of Chile, Santiago 8380453, Chile
| | - Olga Barajas
- Basic and Clinical Oncology Department, University of Chile, Santiago 8380453, Chile
| | - Katherine Marcelain
- Basic and Clinical Oncology Department, University of Chile, Santiago 8380453, Chile
| |
Collapse
|
2
|
Gu YH, Cui XW, Ren JY, Long MM, Wang W, Wei CJ, Aimaier R, Li YH, Chung MH, Gu B, Li QF, Wang ZC. Selection of internal references for RT-qPCR assays in Neurofibromatosis type 1 (NF1) related Schwann cell lines. PLoS One 2021; 16:e0241821. [PMID: 33630851 PMCID: PMC7906369 DOI: 10.1371/journal.pone.0241821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/02/2021] [Indexed: 11/20/2022] Open
Abstract
Real-time quantitative PCR (RT-qPCR) has been widely applied in uncovering disease mechanisms and screening potential biomarkers. Internal reference gene selection determines the accuracy and reproducibility of data analyses. The aim of this study was to identify the optimal reference genes for the relative quantitative analysis of RT-qPCR in fourteen NF1 related cell lines, including non-tumor, benign and malignant Schwann cell lines. The expression characteristics of eleven candidate reference genes (RPS18, ACTB, B2M, GAPDH, PPIA, HPRT1, TBP, UBC, RPLP0, TFRC and RPL32) were screened and analyzed by four software programs: geNorm, NormFinder, BestKeeper and RefFinder. Results showed that GAPDH, the most frequently used internal reference gene, was significantly unstable between various cell lines. The combinational use of two reference genes (PPIA and TBP) was optimal in malignant Schwann cell lines and the use of single reference genes (PPIA or PRLP0) alone or in combination was optimal in benign Schwann cell lines. These recommended internal reference gene selections may improve the accuracy and reproducibility of RT-qPCR in gene expression analyses of NF1 related tumors.
Collapse
Affiliation(s)
- Yi-Hui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Wei Cui
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie-Yi Ren
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Man-Mei Long
- Department of Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng-Jiang Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rehanguli Aimaier
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue-Hua Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Man-Hon Chung
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing-Feng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (QFL); (ZCW)
| | - Zhi-Chao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (QFL); (ZCW)
| |
Collapse
|
3
|
Identification and validation of new reference genes for accurate quantitative reverse transcriptase-PCR normalization in the Antarctic plant Colobanthus quitensis under abiotic stress conditions. Polar Biol 2021. [DOI: 10.1007/s00300-021-02801-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
AbstractThe Antarctic ecotype of Colobanthus quitensis is a vascular plant highly adapted to the harsh environmental conditions of Maritime Antarctica which is now facing with the rapid local warming experienced in the Antarctic Peninsula during the last decades. Thus, the identification of the molecular mechanisms leading to the adaptation to this warming trend is a new target for modern cell physiology. The selection of suitable reference genes for quantification of key stress-responsive genes through quantitative Reverse Transcriptase-Polymerase Chain Reaction (qRT-PCR) is important to ensure accurate and reliable results. In this study, we evaluated the expression stability of eleven candidate genes in C. quitensis under different abiotic stress conditions using geNorm and RefFinder tools. The statistical analysis showed that the appropriate reference genes varied depending on the experimental conditions, even if EF1α and PP2Acs ranked as the most stable reference genes when all stress conditions were considered. To further validate the stability of the selected reference genes, the expression patterns of C. quitensis catalase gene (CqCAT) was analyzed. The reference genes validated in this study will be useful for improving the accuracy of qRT-PCR analysis for gene expression studies of the Antarctic ecotype of C. quitensis and could be extended to other ecotypes adapted to low temperatures.
Collapse
|
4
|
Validation of Reference Genes for Normalization of Relative qRT-PCR Studies in Papillary Thyroid Carcinoma. Sci Rep 2019; 9:15241. [PMID: 31645594 PMCID: PMC6811563 DOI: 10.1038/s41598-019-49247-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Abstract
Quantitative reverse transcription polymerase chain reaction (qRT-PCR) in thyroid tumors require accurate data normalization, however, there are no sufficient studies addressing the suitable reference genes for gene expression analysis in malignant and normal thyroid tissue specimens. The purpose of this study was to identify valid internal control genes for normalization of relative qRT-PCR studies in human papillary thyroid carcinoma tissue samples. The expression characteristics of 12 candidate reference genes (GAPDH, ACTB, HPRT1, TBP, B2M, PPIA, 18SrRNA, HMBS, GUSB, PGK1, RPLP0, and PGM1) were assessed by qRT-PCR in 45 thyroid tissue samples (15 papillary thyroid carcinoma, 15 paired normal tissues and 15 multinodular goiters). These twelve candidate reference genes were selected by a systematic literature search. GeNorm, NormFinder, and BestKeeper statistical algorithms were applied to determine the most stable reference genes. The three algorithms were in agreement in identifying GUSB and HPRT1 as the most stably expressed genes in all thyroid tumors investigated. According to the NormFinder software, the pair of genes including ‘GUSB and HPRT1’ or ‘GUSB and HMBS’ or ‘GUSB and PGM1’ were the best combinations for selection of pair reference genes. The optimal number of genes required for reliable normalization of qPCR data in thyroid tissues would be three according to calculations made by GeNorm algorithm. These results suggest that GUSB and HPRT1 are promising reference genes for normalization of relative qRT-PCR studies in papillary thyroid carcinoma.
Collapse
|
5
|
Krasnov GS, Kudryavtseva AV, Snezhkina AV, Lakunina VA, Beniaminov AD, Melnikova NV, Dmitriev AA. Pan-Cancer Analysis of TCGA Data Revealed Promising Reference Genes for qPCR Normalization. Front Genet 2019; 10:97. [PMID: 30881377 PMCID: PMC6406071 DOI: 10.3389/fgene.2019.00097] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/29/2019] [Indexed: 11/20/2022] Open
Abstract
Quantitative PCR (qPCR) remains the most widely used technique for gene expression evaluation. Obtaining reliable data using this method requires reference genes (RGs) with stable mRNA level under experimental conditions. This issue is especially crucial in cancer studies because each tumor has a unique molecular portrait. The Cancer Genome Atlas (TCGA) project provides RNA-Seq data for thousands of samples corresponding to dozens of cancers and presents the basis for assessment of the suitability of genes as reference ones for qPCR data normalization. Using TCGA RNA-Seq data and previously developed CrossHub tool, we evaluated mRNA level of 32 traditionally used RGs in 12 cancer types, including those of lung, breast, prostate, kidney, and colon. We developed an 11-component scoring system for the assessment of gene expression stability. Among the 32 genes, PUM1 was one of the most stably expressed in the majority of examined cancers, whereas GAPDH, which is widely used as a RG, showed significant mRNA level alterations in more than a half of cases. For each of 12 cancer types, we suggested a pair of genes that are the most suitable for use as reference ones. These genes are characterized by high expression stability and absence of correlation between their mRNA levels. Next, the scoring system was expanded with several features of a gene: mutation rate, number of transcript isoforms and pseudogenes, participation in cancer-related processes on the basis of Gene Ontology, and mentions in PubMed-indexed articles. All the genes covered by RNA-Seq data in TCGA were analyzed using the expanded scoring system that allowed us to reveal novel promising RGs for each examined cancer type and identify several "universal" pan-cancer RG candidates, including SF3A1, CIAO1, and SFRS4. The choice of RGs is the basis for precise gene expression evaluation by qPCR. Here, we suggested optimal pairs of traditionally used RGs for 12 cancer types and identified novel promising RGs that demonstrate high expression stability and other features of reliable and convenient RGs (high expression level, low mutation rate, non-involvement in cancer-related processes, single transcript isoform, and absence of pseudogenes).
Collapse
Affiliation(s)
- George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Wang X, Liu X, Liu C, Ren M, Gao S, Zhao G, Zhang T, Yang Q. Validation of reference genes for the normalization of RT-qPCR expression studies in human tongue carcinoma cell lines and tissue. Oncol Lett 2017; 13:3951-3957. [PMID: 28521492 DOI: 10.3892/ol.2017.5887] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/03/2017] [Indexed: 11/06/2022] Open
Abstract
Reverse transcription quantitative polymerase chain reaction (RT-qPCR) has become a frequently used strategy in gene expression studies. The relative quantification method is an important and commonly used method for the evaluation of RT-qPCR data. The key aim of this method is to identify an applicable internal reference gene. However, there are currently no data concerning the expression of reference genes for gene analysis in human tongue carcinoma cell lines and tissues. In the present study, screening was performed using 12 common reference genes, which were selected in order to provide an experimental basis for the investigation of gene expression in human tongue carcinoma. Tca-8113 and CAL-27 cell lines and a total of 8 tongue carcinoma tissue samples were investigated. The gene expression stability and the applicability of the 12 reference gene candidates were determined using the geNorm, NormFinder and BestKeeper software programs. The results from the three software programs were demonstrated to be variable following comparison. The recommended combinations were 5'-aminolevulinate synthase 1 + glucuronidase β + ribosomal protein L29 (RPL29) for the cell line + tissue group, β-2-microglobulin + RPL29 for the cell line group and peptidylprolyl isomerase A + hydroxymethylbilane synthase + RPL29 for the tissue group. These recommended internal reference genes may improve the accuracy of relative quantitation analysis of target gene expression performed by the RT-qPCR method in further gene expression research on human tongue carcinoma.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Stomatology Department, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xin Liu
- Stomatology Department, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Cong Liu
- Stomatology Department, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ming Ren
- Institute of Orthopedics, Second Hospital, Jilin University, Changchun, Jilin 130041, P.R. China
| | - Sujie Gao
- Anesthesiology Department, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Guanjie Zhao
- Nephrology Department, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Tianfu Zhang
- Stomatology Department, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Qiwei Yang
- Institute of Orthopedics, Second Hospital, Jilin University, Changchun, Jilin 130041, P.R. China.,Central Laboratory, Second Hospital, Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
7
|
Wang X, He J, Wang W, Ren M, Gao S, Zhao G, Wang J, Yang Q. Validation of internal reference genes for relative quantitation studies of gene expression in human laryngeal cancer. PeerJ 2016; 4:e2763. [PMID: 27957397 PMCID: PMC5149058 DOI: 10.7717/peerj.2763] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/04/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The aim of this study was to determine the expression stabilities of 12 common internal reference genes for the relative quantitation analysis of target gene expression performed by reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) in human laryngeal cancer. METHODS Hep-2 cells and 14 laryngeal cancer tissue samples were investigated. The expression characteristics of 12 internal reference gene candidates (18S rRNA, GAPDH, ACTB, HPRT1, RPL29, HMBS, PPIA, ALAS1, TBP, PUM1, GUSB, and B2M) were assessed by RT-qPCR. The data were analyzed by three commonly used software programs: geNorm, NormFinder, and BestKeeper. RESULTS The use of the combination of four internal reference genes was more appropriate than the use of a single internal reference gene. The optimal combination was PPIA + GUSB + RPL29 + HPRT1 for both the cell line and tissues; while the most appropriate combination was GUSB + RPL29 + HPRT1 + HMBS for the tissues. CONCLUSIONS Our recommended internal reference genes may improve the accuracy of relative quantitation analysis of target gene expression performed by the RT-qPCR method in further gene expression research on laryngeal tumors.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of Stomatology, China-Japan Union Hospital, Jilin University , Changchun , China
| | - Jinting He
- Department of Neurology, China-Japan Union Hospital, Jilin University , Changchun , China
| | - Wei Wang
- Department of Stomatology, China-Japan Union Hospital, Jilin University , Changchun , China
| | - Ming Ren
- Department of Orthopedics, Second Hospital, Jilin University , Changchun , China
| | - Sujie Gao
- Department of Anesthesiology, China-Japan Union Hospital, Jilin University , Changchun , China
| | - Guanjie Zhao
- Department of Nephrology, China-Japan Union Hospital, Jilin University , Changchun , China
| | - Jincheng Wang
- Department of Orthopedics, Second Hospital, Jilin University , Changchun , China
| | - Qiwei Yang
- Department of Orthopedics, Second Hospital, Jilin University, Changchun, China; Central Laboratory of Second Hospital, Jilin University, Changchun, China
| |
Collapse
|
8
|
Li Z, Yu X, Shen J, Law PT, Chan MT, Wu WK. MicroRNA expression and its implications for diagnosis and therapy of gallbladder cancer. Oncotarget 2015; 6:13914-21. [PMID: 26040010 PMCID: PMC4546440 DOI: 10.18632/oncotarget.4227] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/13/2015] [Indexed: 01/17/2023] Open
Abstract
Gallbladder cancer is the most common biliary tract malignancy with poor prognosis. MicroRNAs (miRNAs) are a class of small, endogenous, non-coding RNAs of 19-23 nucleotides in length, which regulate gene expression at post-transcriptional and translational levels. Several studies have demonstrated aberrant expression of miRNAs in gallbladder cancer tissues. Recent evidences also demonstrated that specific miRNAs are functionally involved in gallbladder cancer development through modulating cell proliferation, apoptosis, migration, invasion and metastasis. In this review, we explore the possibilities of using miRNAs as prognostic, diagnostic markers and therapeutic targets in gallbladder cancer.
Collapse
Affiliation(s)
- Zheng Li
- 1 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Yu
- 1 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianxiong Shen
- 1 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Priscilla T.Y. Law
- 2 Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Matthew T.V. Chan
- 3 Department of Anaesthesia and Intensive Care and State-Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - William K.K. Wu
- 3 Department of Anaesthesia and Intensive Care and State-Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|