1
|
Marques MP, Neves BG, Varela C, Zuzarte M, Gonçalves AC, Dias MI, Amaral JS, Barros L, Magalhães M, Cabral C. Essential Oils from Côa Valley Lamiaceae Species: Cytotoxicity and Antiproliferative Effect on Glioblastoma Cells. Pharmaceutics 2023; 15:pharmaceutics15020341. [PMID: 36839664 PMCID: PMC9964318 DOI: 10.3390/pharmaceutics15020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Lavandula pedunculata (Mill.) Cav., Mentha cervina L. and Thymus mastichina (L.) L. subsp. mastichina are representative species of the Côa Valley's flora, a Portuguese UNESCO World Heritage Site. L. pedunculata and T. mastichina are traditionally used to preserve olives and to aromatize bonfires on Saint John's Eve, while M. cervina is mainly used as a spice for river fish dishes. Despite their traditional uses, these aromatic plants are still undervalued, and literature regarding their bioactivity, especially anticancer, is scarce. In this work, the morphology of secretory structures was assessed by scanning electron microscopy (SEM), and the composition of essential oils (EOs) was characterized by gas chromatography-mass spectrometry (GC-MS). The study proceeded with cytotoxic evaluation of EOs in tumor and non-tumor cells with the cell death mechanism explored in glioblastoma (GB) cells. L. pedunculata EO presented the most pronounced cytotoxic/antiproliferative activity against tumor cells, with moderate cytotoxicity against non-tumor cells. Whereas, M. cervina EO exhibited a slightly lower cytotoxic effect against tumor cells and did not affect the viability of non-tumor cells. Meanwhile, T. mastichina EO did not induce a strong cytotoxic effect against GB cells. L. pedunculata and M. cervina EOs lead to cell death by inducing apoptosis in a dose-dependent manner. The present study suggests that L. pedunculata and M. cervina EOs have a strong cytotoxic and antiproliferative potential to be further studied as efficient antitumor agents.
Collapse
Affiliation(s)
- Mário Pedro Marques
- Clinic Academic Center of Coimbra (CACC), Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Beatriz Guapo Neves
- Clinic Academic Center of Coimbra (CACC), Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Carla Varela
- Clinic Academic Center of Coimbra (CACC), Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Mónica Zuzarte
- Clinic Academic Center of Coimbra (CACC), Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology, University Clinic of Hematology and Applied Molecular Biology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Group of Environment Genetics and Oncobiology (CIMAGO), Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Inês Dias
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança (IPB), Campus Santa Apolónia, 5300-253 Bragança, Portugal
- Associate Laboratory for Sustainability and Technology in Mountains Regions (SusTEC), Polytechnic Institute of Bragança (IPB), Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Joana S. Amaral
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança (IPB), Campus Santa Apolónia, 5300-253 Bragança, Portugal
- Associate Laboratory for Sustainability and Technology in Mountains Regions (SusTEC), Polytechnic Institute of Bragança (IPB), Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança (IPB), Campus Santa Apolónia, 5300-253 Bragança, Portugal
- Associate Laboratory for Sustainability and Technology in Mountains Regions (SusTEC), Polytechnic Institute of Bragança (IPB), Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Mariana Magalhães
- Clinic Academic Center of Coimbra (CACC), Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Célia Cabral
- Clinic Academic Center of Coimbra (CACC), Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
2
|
Therapeutic potential of Curcuma oil and its terpenoids in gynecological cancers. Biomed Pharmacother 2023; 157:114016. [PMID: 36395609 DOI: 10.1016/j.biopha.2022.114016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Gynecological cancers encompass all uncontrolled and aberrant cell growth in the female reproductive system, therapeutic interventions are constantly evolving, but there is still a high death rate, significant side effects and medication resistance, making the task of treatment challenging and complex. The essential oil extracted from the rhizome of Curcuma longa is a promising natural drug, which has excellent biological activity on cancer cells and is to be developed as a new type of anti-gynecological tumor therapeutic agent. PURPOSE To systematically summarize the available evidence for the efficacy of Curcuma oil and its terpenoids (β-elemene, curcumol, furanodiene, and germacrone) in gynecological cancers, primarily malignancies of the reproductive system, involving ovarian, cervical, and endometrial cancers, explain the underlying mechanisms of preventing and treating gynecological cancers, and assess the shortcomings of existing work. RESULTS Through several signaling channels, Curcuma oil and its terpenoids can not only stop the growth of ovarian cancer, cervical cancer, and endometrial cancer cells, limit the formation of tumors, but also raise the effectiveness of chemotherapy drugs and improve the quality of life for patients. CONCLUSION It provides a preclinical basis for the efficacy of Curcuma oil as a broad-spectrum anti-tumor agent for the prevention and treatment of gynecological cancers. Even so, further efforts are still needed to improve the bioavailability of Curcuma oil and upgrade related experiments.
Collapse
|
3
|
Pinus mugo Essential Oil Impairs STAT3 Activation through Oxidative Stress and Induces Apoptosis in Prostate Cancer Cells. Molecules 2022; 27:molecules27154834. [PMID: 35956786 PMCID: PMC9369512 DOI: 10.3390/molecules27154834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Essential oils (EOs) and their components have been reported to possess anticancer properties and to increase the sensitivity of cancer cells to chemotherapy. The aim of this work was to select EOs able to downregulate STAT3 signaling using Western blot and RT-PCR analyses. The molecular mechanism of anti-STAT3 activity was evaluated through spectrophotometric and fluorometric analyses, and the biological effect of STAT3 inhibition was analyzed by flow cytometry and wound healing assay. Herein, Pinus mugo EO (PMEO) is identified as an inhibitor of constitutive STAT3 phosphorylation in human prostate cancer cells, DU145. The down-modulation of the STAT3 signaling cascade decreased the expression of anti-proliferative as well as anti-apoptotic genes and proteins, leading to the inhibition of cell migration and apoptotic cell death. PMEO treatment induced a rapid drop in glutathione (GSH) levels and an increase in reactive oxygen species (ROS) concentration, resulting in mild oxidative stress. Pretreatment of cells with N-acetyl-cysteine (NAC), a cell-permeable ROS scavenger, reverted the inhibitory action of PMEO on STAT3 phosphorylation. Moreover, combination therapy revealed that PMEO treatment displayed synergism with cisplatin in inducing the cytotoxic effect. Overall, our data highlight the importance of STAT3 signaling in PMEO cytotoxic activity, as well as the possibility of developing adjuvant therapy or sensitizing cancer cells to conventional chemotherapy.
Collapse
|
4
|
Chemoprevention and therapeutic role of essential oils and phenolic compounds: Modeling tumor microenvironment in glioblastoma. Pharmacol Res 2021; 169:105638. [PMID: 33933637 DOI: 10.1016/j.phrs.2021.105638] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/28/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022]
Abstract
Glioblastoma (GBM) is the most common primary tumor of the central nervous system. Current treatments available for GBM entails surgical resection followed by temozolomide chemotherapy and/or radiotherapy, which are associated with multidrug resistance and severe side effects. While this treatment could yield good results, in almost all cases, patients suffer from relapse, which leads to reduced survival rates. Thus, therapeutic approaches with improved efficiency and reduced off-target risks are needed to overcome these problems. Regarding this, natural products appear as a safe and attractive strategy as chemotherapeutic agents or adjuvants in the treatment of GBM. Besides the increasing role of natural compounds for chemoprevention of GBM, it has been proposed to prevent carcinogenesis and metastasis of GBM. Numerous investigations showed that natural products are able to inhibit proliferation and angiogenesis, to induce apoptosis, and to target GBM stem cells, which are associated with tumor development and recurrence. This review gives a timely and comprehensive overview of the current literature regarding chemoprevention and therapy of GBM by natural products with a focus on essential oils and phenolic compounds and their molecular mechanisms.
Collapse
|
5
|
Synergistic effects of curcumin and its analogs with other bioactive compounds: A comprehensive review. Eur J Med Chem 2020; 210:113072. [PMID: 33310285 DOI: 10.1016/j.ejmech.2020.113072] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023]
Abstract
Curcumin, as a natural compound, extracted from plant Curcuma longa, is abundant in the Indian subcontinent and Southeast Asia, and have been used in a diverse array of pharmacological activities. Although curcumin has some limitations like low stability and low bioavailability, it has been proved that this compound induced apoptosis signaling and is also known to block cell proliferation signaling pathway. Recently, extensive research has been carried out to study the application of curcumin as a health improving agent, and devise new methods to overcome to the curcumin limitations and incorporate this functional ingredient into foods. Combinational chemotherapy is one of the basic strategies is using for 60 years for the treatment of various health problems like cancer, malaria, inflammation, diabetes and etc. Molecular hybridization is another strategy to make multi-pharmacophore or conjugated drugs with more synergistic effect than the parent compounds. The aim of this review is to provide an overview of the pharmacological activity of curcumin and its analogs in combination with other bioactive compounds and cover more recent reports of anti-cancer, anti-malarial, and anti-inflammatory activities of these analogs.
Collapse
|
6
|
Yu CH, Zhao JS, Zhao H, Peng T, Shen DC, Xu QX, Li Y, Webb RC, Wang MH, Shi XM, Peng C, Ding WJ. Transcriptional profiling of uterine leiomyoma rats treated by a traditional herb pair, Curcumae rhizoma and Sparganii rhizoma. ACTA ACUST UNITED AC 2019; 52:e8132. [PMID: 31141088 PMCID: PMC6542090 DOI: 10.1590/1414-431x20198132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/12/2019] [Indexed: 12/23/2022]
Abstract
The aim of this study was to elucidate the concise effects of a traditional herb pair, Curcumae rhizoma-Sparganii rhizoma (CRSR), on uterine leiomyoma (UL) by analyzing transcriptional profiling. The UL rat model was made by intramuscular injection of progesterone and gavage administration of diethylstilbestrol. From 11 weeks of the establishment of the model, rats of the UL+CRSR group were gavaged daily with CRSR (6.67 g/kg). The serum concentrations of progesterone (P) and estradiol (E2) were determined by radioimmunoassay, the uterine index was measured by caliper measurement, and the pathological status was observed by hematoxylin and eosin stain. Gene expression profiling was checked by NimbleGen Rat Gene Expression Microarrays. The results indicated that the uterine mass of UL+CRSR rats was significantly shrunk and serum P and E2 levels significantly reduced compared to UL animals and nearly to the level of normal rats. Results of microarrays displayed the extensive inhibition of CRSR upon the expression of proliferation and deposition of extracellular matrix (ECM)-related genes, and significantly regulated a wide range of metabolism disorders. Furthermore, CRSR extensively regulated key pathways of the UL process, such as MAPK, PPAR, Notch, and TGF-β/Smad. Regulation of the crucial pathways for the UL process and ECM metabolism may be the underlying mechanisms of CRSR treatment. Further studies will provide clear clues for effectively treating UL with CRSR.
Collapse
Affiliation(s)
- Cheng Hao Yu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jin Shuang Zhao
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Hui Zhao
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Teng Peng
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Dong Cheng Shen
- The Community Health Service Center of Xi'an Road, Chengdu, Sichuan, China
| | - Qiu Xia Xu
- University of Chinese Academy of Sciences Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yao Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - R Clinton Webb
- Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Mong Heng Wang
- Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Xing Ming Shi
- Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Cheng Peng
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wei Jun Ding
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Dosoky NS, Setzer WN. Chemical Composition and Biological Activities of Essential Oils of Curcuma Species. Nutrients 2018; 10:E1196. [PMID: 30200410 PMCID: PMC6164907 DOI: 10.3390/nu10091196] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023] Open
Abstract
Members of the genus Curcuma L. have been used in traditional medicine for centuries for treating gastrointestinal disorders, pain, inflammatory conditions, wounds, and for cancer prevention and antiaging, among others. Many of the biological activities of Curcuma species can be attributed to nonvolatile curcuminoids, but these plants also produce volatile chemicals. Essential oils, in general, have shown numerous beneficial effects for health maintenance and treatment of diseases. Essential oils from Curcuma spp., particularly C. longa, have demonstrated various health-related biological activities and several essential oil companies have recently marketed Curcuma oils. This review summarizes the volatile components of various Curcuma species, the biological activities of Curcuma essential oils, and potential safety concerns of Curcuma essential oils and their components.
Collapse
Affiliation(s)
- Noura S Dosoky
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA.
| | - William N Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA.
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
8
|
Singh N, Sharma A. Turmeric (Curcuma longa): miRNAs and their regulating targets are involved in development and secondary metabolite pathways. C R Biol 2017; 340:481-491. [PMID: 29126713 DOI: 10.1016/j.crvi.2017.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 08/20/2017] [Accepted: 09/30/2017] [Indexed: 01/22/2023]
Abstract
Turmeric has been used as a therapeutic herb over centuries in traditional medicinal systems due to the presence of several secondary metabolite compounds. microRNAs are known to regulate gene expression at the post-transcriptional level by transcriptional cleavage or translation repression. miRNAs have been demonstrated to play an active role in secondary metabolism regulation. The present work was focused on the identification of the miRNAs involved in the regulation of secondary metabolite and development process of turmeric. Eighteen miRNA families were identified for turmeric. Sixteen miRNA families were observed to regulate 238 target transcripts. LncRNAs targets of the putative miRNA candidates were also predicted. Our results indicated their role in binding, reproduction, stress, and other developmental processes. Gene annotation and pathway analysis illustrated the biological function of the targets regulated by the putative miRNAs. The miRNA-mediated gene regulatory network also revealed co-regulated targets that were regulated by two or more miRNA families. miR156 and miR5015 were observed to be involved in rhizome development. miR5021 showed regulation for terpenoid backbone biosynthesis and isoquinoline alkaloid biosynthesis pathways. The flavonoid biosynthesis pathway was observed to be regulated by miR2919. The analysis revealed the probable involvement of three miRNAs (miR1168.2, miR156b and miR1858) in curcumin biosynthesis. Other miRNAs were found to be involved in the growth and developmental process of turmeric. Phylogenetic analysis of selective miRNAs was also performed.
Collapse
Affiliation(s)
- Noopur Singh
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, 226015 Lucknow, UP, India.
| | - Ashok Sharma
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, 226015 Lucknow, UP, India.
| |
Collapse
|
9
|
Song T, Sun R. Pharmacodynamics study of zedoary turmeric oil chitosan microspheres administered via arterial embolization. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1958-1963. [DOI: 10.3109/21691401.2015.1115411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|