1
|
Sencha LM, Karpova MA, Dobrynina OE, Balalaeva IV. Cell-type dependent effect of 3D collagen matrix on cancer cell resistance to suboptimal conditions: the case of serum deprivation, glucose starvation, and hypoxia. Tissue Cell 2025; 93:102719. [PMID: 39823703 DOI: 10.1016/j.tice.2024.102719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/13/2024] [Accepted: 12/29/2024] [Indexed: 01/20/2025]
Abstract
The extracellular matrix (ECM) and its primary chemical components, including collagen, play a pivotal role in carcinogenesis and tumor progression. The ECM actively regulates cell proliferation, migration, and, importantly, resistance to various adverse factors. It is widely recognized as a key factor in modifying the resistance of tumor cells to various treatment modalities and cytotoxic compounds. However, the role of the ECM in tumor cell adaptation to nutritional deficiencies and hypoxic conditions remains significantly less studied. Since it is generally accepted that tumor cells resistance increases when cultured in a three-dimensional matrix, we sought to experimentally test the universality of this statement. In this work, we analyzed the responses of tumor cells with varying origins and proliferative activities, including human bladder carcinoma, epidermoid carcinoma, and ovarian carcinoma, to deprivation of serum, glucose and oxygen. We compared cell resistance to suboptimal conditions when cultured in a monolayer on tissue culture (TC)-treated polystyrene, on collagen-coated surfaces, or within a three-dimensional hydrogel composed of collagen type I. All three cell lines were stably transfected with fluorescent protein genes. To register the cell growth dynamics, we used a fluorescence-based technique that allows long-term quantitative observations without disrupting the hydrogel. The analyzed cell lines demonstrated different patterns of relative sensitivity to suboptimal conditions. We revealed that the direction and intensity of the collagen matrix effect depend on the cell type. Slowly proliferating ovarian carcinoma cells showed no noticeable changes in their behavior when cultured in a gel compared to a monolayer. In the case of bladder carcinoma, we registered predominantly resistance-stimulating effect of the collagen matrix, but it was significant only under serum deprivation. The most pronounced effect of collagen was registered for epidermoid carcinoma. Importantly, this effect was ambivalent: gel-embedded cells demonstrated significantly enhanced resistance to serum deprivation, but, at the same time, they were more responsive to glucose starvation and hypoxic conditions. We attribute the registered phenomenon to the individual characteristics of tumor cells with different origins and metabolic activities.
Collapse
Affiliation(s)
- Ludmila M Sencha
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Maria A Karpova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Olga E Dobrynina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Irina V Balalaeva
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.
| |
Collapse
|
2
|
Kikuchi T, Nishimura M, Shirakawa C, Fujita Y, Otoi T. Relationship between oxygen partial pressure and inhibition of cell aggregation of human adipose tissue-derived mesenchymal stem cells stored in cell preservation solutions. Regen Ther 2023; 24:25-31. [PMID: 37303463 PMCID: PMC10247950 DOI: 10.1016/j.reth.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/21/2023] [Accepted: 05/20/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction This study investigated the storage conditions under which cell aggregation occurs and the conditions that inhibit cell aggregation when human adipose tissue-derived mesenchymal stem cells (hADSCs) are stored in lactated Ringer's solution (LR) supplemented with 3% trehalose and 5% dextran 40 (LR-3T-5D). Methods We first examined the effects of storage temperature and time on the aggregation and viability of hADSCs stored in LR and LR-3T-5D. The cells were stored at 5 °C or 25 °C for various times up to 24 h. We then evaluated the effects of storage volume (250-2,000 μL), cell density (2.5-20 × 105 cells/mL), and nitrogen gas replacement on aggregation, oxygen partial pressure (pO2), and viability of hADSCs stored for 24 h at 25 °C in LR-3T-5D. Results When stored in LR-3T-5D, viability did not change under either condition compared with pre-storage, but the cell aggregation rate increased significantly with storage at 25 °C for 24 h (p<0.001). In LR, the aggregation rate did not change under either condition, but cell viability decreased significantly after 24 h at both 5 °C and 25 °C (p < 0.05). The cell aggregation rates and pO2 tended to decrease with increasing solution volume and cell density. Nitrogen gas replacement significantly decreased the cell aggregation rate and pO2 (p < 0.05). However, there were no differences in viability among cells stored under conditions of different storage volumes, densities, and nitrogen gas replacement. Conclusions Aggregation of cells after storage at 25 °C in LR-3T-5D may be suppressed by increasing the storage volume and cell density as well as by incorporating nitrogen replacement, which lowers the pO2 in the solution.
Collapse
Affiliation(s)
- Takeshi Kikuchi
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima, 772-8601, Japan
| | - Masuhiro Nishimura
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima, 772-8601, Japan
| | - Chikage Shirakawa
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima, 772-8601, Japan
| | - Yasutaka Fujita
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima, 772-8601, Japan
| | - Takeshige Otoi
- Bio-Innovation Research Center, Tokushima University, Myozai-gun, Tokushima, 779-3233, Japan
| |
Collapse
|
3
|
Gunaydin B, Yigitturk G, Elbe H. Cytotoxic effects of Phenformin on ovarian cancer cells: expression of HIF-1α and PDK1 in the hypoxic microenvironment. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2023; 64:355-361. [PMID: 37867353 PMCID: PMC10720940 DOI: 10.47162/rjme.64.3.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/14/2023] [Indexed: 10/24/2023]
Abstract
Today, many anticancer drugs are used clinically for ovarian cancer, one of the leading causes of cancer-related deaths in women. Phenformin is an antidiabetic drug of the biguanide class. It improves the antiproliferative activity in cancer cells. Hypoxia is an important component associated with ovarian cancer and its tumor microenvironment. The aim of this study was to investigate the anticancer effects of Phenformin in SKOV-3 human ovarian cancer cells under hypoxic conditions. SKOV-3 human ovarian cancer cells treated with different doses of Phenformin (0.5 mM, 1 mM, 2 mM, 5 mM) for 24 hours were subjected to WST-1 cell viability assay and Annexin V apoptosis assay. A dose-dependent decrease in cell viability with Phenformin treatment was observed. In addition, Phenformin activated percentage of apoptotic SKOV-3 cancer cells in a dose-dependent manner. In this study, Cobalt(II) chloride (CoCl2) treatment leads to increased hypoxia-inducible factor-1alpha (HIF-1α) expression and Phenformin can recover hypoxic condition. HIF-1α protein expression was significantly correlated with cell viability assay and apoptosis assay. We also found that Phenformin inhibits expression of phosphoinositide-dependent kinase 1 (PDK1) in SKOV-3 ovarian cancer cells. The ability to migrate to cancer cells was significantly reduced in a dose-dependent manner with Phenformin. This data demonstrates that Phenformin treatment can induce apoptosis and inhibit proliferation in ovarian cancer cells under hypoxic conditions. The findings reveal that HIF-1α is a new target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Burcu Gunaydin
- Department of Histology and Embryology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Türkiye;
| | | | | |
Collapse
|
4
|
Li G, Shao Y, Pan Y, Li Y, Wang Y, Wang L, Wang X, Shao K, Wang S, Liu N, Zhang J, Zhao W, Nakamura H. Total synthesis and biological evaluation of 7-hydroxyneolamellarin A as hypoxia-inducible factor-1α inhibitor for cancer therapy. Bioorg Med Chem Lett 2021; 50:128338. [PMID: 34469710 DOI: 10.1016/j.bmcl.2021.128338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
7-Hydroxyneolamellarin A (7-OH-Neo A, 1), a natural marine product derived from sponge Dendrilla nigra, was first synthesized with 10% overall yield under the instruction of convergent synthetic strategy. We found that 7-OH-Neo A could attenuate the accumulation of hypoxia-inducible factor-1α (HIF-1α) protein and inhibit vascular epidermal growth factor (VEGF) transcriptional activity, showing well inhibitory effect on HIF-1 signaling pathway. Meantime, 7-OH-Neo A had the well anti-tumor activities, such as inhibiting tumor angiogenesis, proliferation, migration and invasion. More importantly, 7-OH-Neo A exhibited profound anti-tumor effect in mice breast cancer model by suppressing the accumulation of HIF-1α in tumor tissue. Mechanism study demonstrated that 7-OH-Neo A might target the protein with the ability of stabilizing HIF-1α in hypoxia. Due to the excellent water solubility, superior anti-tumor activity and good biocompatibility, 7-OH-Neo A shows the promising potential for being exploited as an anti-tumor agent in near future.
Collapse
Affiliation(s)
- Guangzhe Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Yujie Shao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yue Pan
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yueqing Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Liu Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xu Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shisheng Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Naixuan Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jingdong Zhang
- Medical Oncology Department of Gastrointestinal Cancer, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang 110042, China
| | - Weijie Zhao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
5
|
Elzakra N, Kim Y. HIF-1α Metabolic Pathways in Human Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:243-260. [PMID: 33791987 DOI: 10.1007/978-3-030-51652-9_17] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxygen is directly involved in many key pathophysiological processes. Oxygen deficiency, also known as hypoxia, could have adverse effects on mammalian cells, with ischemia in vital tissues being the most significant (Michiels C. Physiological and pathological responses to hypoxia. Am J Pathol 164(6): 1875-1882, 2004); therefore, timely adaptive responses to variations in oxygen availability are essential for cellular homeostasis and survival. The most critical molecular event in hypoxic response is the activation and stabilization of a transcriptional factor termed hypoxia-induced factor-1 (HIF-1) that is responsible for the upregulation of many downstream effector genes, collectively known as hypoxia-responsive genes. Multiple key biological pathways such as proliferation, energy metabolism, invasion, and metastasis are governed by these genes; thus, HIF-1-mediated pathways are equally pivotal in both physiology and pathology.As we gain knowledge on the molecular mechanisms underlying the regulation of HIF-1, a great focus has been placed on elucidating the cellular function of HIF-1, particularly the role of HIF-1 in cancer pathogenesis pathways such as proliferation, invasion, angiogenesis, and metastasis. In cancer, HIF-1 is directly involved in the shift of cancer tissues from oxidative phosphorylation to aerobic glycolysis, a phenomenon known as the Warburg effect. Although targeting HIF-1 as a cancer therapy seems like an extremely rational approach, owing to the complex network of its downstream effector genes, the development of specific HIF-1 inhibitors with fewer side effects and more specificity has not been achieved. Therefore, in this review, we provide a brief background about the function of HIF proteins in hypoxia response with a special emphasis on the unique role played by HIF-1α in cancer growth and invasiveness, in the hypoxia response context.
Collapse
Affiliation(s)
- Naseim Elzakra
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA.
| | - Yong Kim
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA. .,Laboratory of Stem Cell and Cancer Epigenetics, Center for Oral Oncology Research, UCLA School of Dentistry, Los Angeles, CA, USA. .,UCLA's Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA. .,Broad Stem Cell Research Institute, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Roque R, Costa Sousa F, Figueiredo-Dias M. Epithelial-mesenchymal interconversions in ovarian cancer: The levels and functions of E-cadherin in intraabdominal dissemination. Oncol Rev 2020; 14:475. [PMID: 32676171 PMCID: PMC7358986 DOI: 10.4081/oncol.2020.475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
The metastatic process of ovarian cancer (OC) is almost exclusively defined by direct shedding of tumor cells into the abdominal cavity, followed by clustering into multicellular aggregates and posterior peritoneal anchorage. This process relies on dynamic intercellular interactions which are modified by epithelial- mesenchymal interconversions and, therefore, E-cadherin expression variability. Although widely accepted as a tumor suppressor in many types of cancer, E-cadherin is currently known to have a dynamic expression and a much more complex role in OC. First, high E-cadherin expression is considered a sign of metaplasia in the normal ovarian epithelium, due to its association with epithelial growth factor receptor (EGFR) mediated cell proliferation. Subsequently, it is the decreased expression of E-cadherin that allows the acquisition of a more invasive phenotype, leading to the spread of primary tumor cells into the peritoneal fluid. This downregulation seems to depend on complex regulatory mechanisms, from molecular proteolysis to microenvironment interference and epigenetic regulation. E-cadherin cleavage and its resulting fragments appear to be essential to the process of dissemination and even to the formation of multicellular aggregates. Paradoxically, the maintenance of some E-cadherin expression seems to promote intercellular adhesion, resistance, and survival while decreasing cancer response to chemotherapy. Multiple studies have shown that reversing epithelial-mesenchymal transaction (EMT) and increasing E-cadherin expression prevents OC intraperitoneal dissemination, but findings that simultaneously correlate E-cadherin downregulation to higher chemotherapy sensitivity should not be ignored. Nevertheless, EMT and E-cadherin seem to have a potential interest as therapeutic targets in novel approaches to OC treatment.
Collapse
Affiliation(s)
| | - Filipa Costa Sousa
- Universitary Clinic of Gynecology, Faculty of Medicine, University of Coimbra
- Gynecology Department, Universitary Hospital Center of Coimbra, Portugal
| | - Margarida Figueiredo-Dias
- Universitary Clinic of Gynecology, Faculty of Medicine, University of Coimbra
- Gynecology Department, Universitary Hospital Center of Coimbra, Portugal
| |
Collapse
|
7
|
Yu H, Wang H, Yin Y, Wang Z. Liriopesides B from Liriope spicata var. prolifera inhibits metastasis and induces apoptosis in A2780 human ovarian cancer cells. Mol Med Rep 2020; 22:1747-1758. [PMID: 32582970 PMCID: PMC7411299 DOI: 10.3892/mmr.2020.11256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 05/12/2020] [Indexed: 12/02/2022] Open
Abstract
Ovarian cancer is the most frequent cause of death among gynecological cancers. In the present study, the anti-cancer effect of liriopesides B, a steroidal saponin from Liriope spicata var. prolifera, against A2780 cells was investigated. Transwell chambers were adopted to assess its effect on cell invasion and chemotaxis abilities. Flow cytometry was used to analyze the cell cycle and apoptosis. Reverse transcription-quantitative PCR was employed to examine gene expression levels. Western blot analysis was performed to detect protein expression levels. Liriopesides B inhibited the invasion and chemotactic movement ability of A2780 cells in a dose-dependent manner. Furthermore, liriopesides B caused cell cycle arrest in A2780 cells at the G1 phase following incubation for 24, 48 and 72 h. Hoechst 33258 staining indicated that, following incubation for 48 h, liriopesides B induced cell apoptosis in a dose-dependent manner. Flow cytometry verified that liriopesides B induced apoptosis in A2780 cells and induced late apoptosis in a dose-dependent manner. Furthermore, liriopesides B significantly increased the mRNA expression levels of E-CADHERIN, p21 and p27 and decreased the gene expression levels of BCL-2, which was consistent with its protein expression levels. In conclusion, liriopesides B possess anti-cancer properties, including inhibition of metastasis-associated behaviors, cell cycle arrest and induction of apoptosis. Therefore, liriopesides B may be considered as a candidate drug against ovarian cancer.
Collapse
Affiliation(s)
- Haizhong Yu
- College of Life Sciences, Chongqing University, Chongqing 400044, P.R. China
| | - Haiyan Wang
- School of Food Science and Technology, Hubei University of Arts and Science, Xiangyang, Hubei 441053, P.R. China
| | - Youping Yin
- College of Life Sciences, Chongqing University, Chongqing 400044, P.R. China
| | - Zhongkang Wang
- College of Life Sciences, Chongqing University, Chongqing 400044, P.R. China
| |
Collapse
|
8
|
Liu M, Liang Y, Zhu Z, Wang J, Cheng X, Cheng J, Xu B, Li R, Liu X, Wang Y. Discovery of Novel Aryl Carboxamide Derivatives as Hypoxia-Inducible Factor 1α Signaling Inhibitors with Potent Activities of Anticancer Metastasis. J Med Chem 2019; 62:9299-9314. [DOI: 10.1021/acs.jmedchem.9b01313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mingming Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China
- Anhui Chem-Bright Bioengineering Company Limited, Huaibei 235025, China
| | - Yuru Liang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhongzhen Zhu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jin Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xingxing Cheng
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jiayi Cheng
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Binpeng Xu
- Anhui Chem-Bright Bioengineering Company Limited, Huaibei 235025, China
| | - Rong Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xinhua Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yang Wang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
9
|
He S, Wang W, Yang Y, Li E, Xu L, Chen L. FAM3B promotes progression of oesophageal carcinoma via regulating the AKT-MDM2-p53 signalling axis and the epithelial-mesenchymal transition. J Cell Mol Med 2019; 23:1375-1385. [PMID: 30565387 PMCID: PMC6349344 DOI: 10.1111/jcmm.14040] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 10/19/2018] [Accepted: 10/30/2018] [Indexed: 02/05/2023] Open
Abstract
FAM3B has been suggested to play important roles in the progression of many cancers, such as gastric, oral, colon and prostate cancer. However, little is known about the role of FAM3B in human esophageal squamous cell carcinoma (ESCC). In the present study, we found that FAM3B expression was higher in ESCC tissues than in adjacent normal tissues. Using quantitative real-time polymerase chain reaction, we found similar results in cell lines. FAM3B expression was significantly related to T/TNM stage. Importantly, Kaplan-Meier analysis revealed that a high expression level of FAM3B predicted a poor outcome for ESCC patients. Overexpression of FAM3B inhibits ESCC cell death, increases oesophageal tumour growth in xenografted nude mice, and promotes ESCC cell migration and invasion. Further studies confirmed that FAM3B regulates the AKT-MDM2-p53 pathway and two core epithelial-to-mesenchymal transition process markers, Snail and E-cadherin. Our results provide new insights into the role of FAM3B in the progression of ESCC and suggest that FAM3B may be a promising molecular target and diagnostic marker for ESCC.
Collapse
Affiliation(s)
- Song‐Lin He
- Department of Thoracic SurgeryWest China Hospital of Sichuan UniversityChengduChina
- North Sichuan Medical CollegeNanchongChina
| | - Wen‐Ping Wang
- Department of Thoracic SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Yu‐Sang Yang
- Department of Thoracic SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - En‐Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan AreaShantou University Medical CollegeShantouChina
- Department of Biochemistry and Molecular BiologyShantou University Medical CollegeShantouChina
| | - Li‐Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan AreaShantou University Medical CollegeShantouChina
- Institute of Oncologic PathologyShantou University Medical CollegeShantouChina
| | - Long‐Qi Chen
- Department of Thoracic SurgeryWest China Hospital of Sichuan UniversityChengduChina
| |
Collapse
|
10
|
Browning L, Patel MR, Horvath EB, Tawara K, Jorcyk CL. IL-6 and ovarian cancer: inflammatory cytokines in promotion of metastasis. Cancer Manag Res 2018; 10:6685-6693. [PMID: 30584363 PMCID: PMC6287645 DOI: 10.2147/cmar.s179189] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer is the most fatal gynecological cancer in the USA and the fifth most common cancer-related cause of death in women. Inflammation has been shown to play many roles in ovarian cancer tumor growth, with the proinflammatory cytokine interleukin-6 (IL-6) having been established as a key immunoregulatory cytokine. Ovarian cancer cells continuously secrete cytokines that promote tumorigenicity in both autocrine and paracrine fashions while also receiving signals from the tumor microenvironment (TME). The TME contains many cells including leukocytes and fibroblasts, which respond to proinflammatory cytokines and secrete their own cytokines, which can produce many effects including promotion of chemoresistance, resistance to apoptosis, invasion, angiogenesis by way of overexpression of vascular endothelial growth factor, and promotion of metastatic growth at distant sites. IL-6 and its proinflammatory family members, including oncostatin M, have been found to directly stimulate enhanced invasion of cancer cells through basement membrane degradation caused by the overexpression of matrix metalloproteinases, stimulate promotion of cell cycle, enhance resistance to chemotherapy, and cause epithelial-to-mesenchymal transition (EMT). IL-6 has been shown to activate signaling pathways that lead to tumor proliferation, the most studied of which being the Janus kinase (JAK) and STAT3 pathway. IL-6-induced JAK/STAT activation leads to constitutive activation of STAT3, which has been correlated with enhanced tumor cell growth and resistance to chemotherapy. IL-6 has also been shown to act as a trigger of the EMT, the hypothesized first step in the metastatic cascade. Understanding the important role of IL-6 and its family members' effects on the pathogenesis of ovarian cancer tumor growth and metastasis may lead to more novel treatments, detection methods, and improvement of overall clinical outcomes.
Collapse
Affiliation(s)
- Landon Browning
- University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Megha R Patel
- University of California Riverside School of Medicine, Riverside, CA 92521, USA
| | - Eli Bring Horvath
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA,
| | - Ken Tawara
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA, .,Biomolecular Sciences Program, Boise State University, Boise, ID 83725, USA,
| | - Cheryl L Jorcyk
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA, .,Biomolecular Sciences Program, Boise State University, Boise, ID 83725, USA,
| |
Collapse
|
11
|
Koya Y, Liu W, Yamakita Y, Senga T, Shibata K, Yamashita M, Nawa A, Kikkawa F, Kajiyama H. Hematopoietic lineage cell-specific protein 1 (HS1), a hidden player in migration, invasion, and tumor formation, is over-expressed in ovarian carcinoma cells. Oncotarget 2018; 9:32609-32623. [PMID: 30220969 PMCID: PMC6135686 DOI: 10.18632/oncotarget.25975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic lineage cell-specific protein 1 (HS1), which is the hematopoietic homolog of cortactin, is an actin-binding protein and Lyn substrate. It is upregulated in several cancers and its expression level is associated with increased cell migration, metastasis, and poor prognosis. Here we investigated the expression and roles of HS1 in ovarian carcinoma cells. We analyzed the expression of HS1 in 171 ovarian cancer specimens and determined the association between HS1 expression and clinicopathological characteristics, including patient outcomes. In patients with stage II-IV disease, positive HS1 expression was associated with significantly worse overall survival than negative expression (P < 0.05). HS1 was localized in invadopodia in some ovarian cancer cells and was required for invadopodia formation. Migration and invasion of ovarian cancer cells were suppressed by down-regulation of HS1, but increased in cells that over-expressed exogenous HS1. Furthermore, ovarian cancer cells that expressed HS1 shRNA exhibited reduced tumor formation in a mouse xenograft model. Finally, we found that tyrosine phosphorylation of HS1 was essential for cell migration and invasion. These findings show that HS1 is a useful biomarker for the prognosis of patients with ovarian carcinoma and is a critical regulator of cytoskeleton remodeling involved in cell migration and invasion.
Collapse
Affiliation(s)
- Yoshihiro Koya
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan.,Bell Research Center for Reproductive Health and Cancer, Nagoya, Aichi, Japan
| | - Wenting Liu
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan.,Bell Research Center for Reproductive Health and Cancer, Nagoya, Aichi, Japan
| | - Yoshihiko Yamakita
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan.,Bell Research Center for Reproductive Health and Cancer, Nagoya, Aichi, Japan
| | | | - Kiyosumi Shibata
- Department of Obstetrics and Gynecology, Fujita Health University, Banbuntane Hotokukai Hospital, Nakagawa-ku, Nagoya, Japan
| | - Mamoru Yamashita
- Bell Research Center for Reproductive Health and Cancer, Nagoya, Aichi, Japan
| | - Akihiro Nawa
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan.,Bell Research Center for Reproductive Health and Cancer, Nagoya, Aichi, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| |
Collapse
|
12
|
Luo Y, Li M, Zuo X, Basourakos SP, Zhang J, Zhao J, Han Y, Lin Y, Wang Y, Jiang Y, Lan L. β‑catenin nuclear translocation induced by HIF‑1α overexpression leads to the radioresistance of prostate cancer. Int J Oncol 2018; 52:1827-1840. [PMID: 29658569 PMCID: PMC5919719 DOI: 10.3892/ijo.2018.4368] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 03/16/2018] [Indexed: 12/27/2022] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is known to play crucial roles in tumor radioresistance; however, the molecular mechanisms responsible for the promotion of tumor radioresistance by HIF-1α remain unclear. β-catenin is known to be involved in the metastatic potential of prostate cancer (PCa). In this study, to investigate the role of HIF-1α and β-catenin in the radioresistance of PCa, two PCa cell lines, LNCaP and C4-2B, were grouped as follows: Negative control (no treatment), HIF-1α overexpression group (transfected with HIF-1α overexpression plasmid) and β-catenin silenced group (transfected with HIF-1α plasmids and β-catenin-shRNA). Cell proliferation, cell cycle, cell invasion and radiosensitivity were examined under normal or hypoxic conditions. In addition, radiosensitivity was examined in two mouse PCa models (the LNCaP orthotopic BALB/c-nu mice model and the C4-2B subcutaneous SCID mice model). Our results revealed that in both the LNCaP and C4-2B cells, transfection with HIF-1α overexpression plasmid led to an enhanced β-catenin nuclear translocation, while β-catenin silencing inhibited β-catenin nuclear translocation. The enhanced β-catenin nuclear translocation induced by HIF-1α overexpression resulted in an enhanced cell proliferation and cell invasion, an altered cell cycle distribution, decreased apoptosis, and improved non-homologous end joining (NHEJ) repair under normal and irradiation conditions. Similar results were observed in the animal models. HIF-1α overexpression enhanced β-catenin nuclear translocation, which led to the activation of the β-catenin/NHEJ signaling pathway and increased cell proliferation, cell invasion and DNA repair. These results thus suggest that HIF-1α overexpression promotes the radioresistance of PCa cells.
Collapse
Affiliation(s)
- Yong Luo
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Mingchuan Li
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Xuemei Zuo
- Department of Clinical Laboratory, Tong Ren Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200233, P.R. China
| | - Spyridon P Basourakos
- Department of Genitourinary Medical Oncology, Cancer Medicine, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Jiao Zhang
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Jiahui Zhao
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Yili Han
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Yunhua Lin
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Yongxing Wang
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Yongguang Jiang
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Ling Lan
- Department of Endocrinology, Beijing Jishuitan Hospital, The 4th Medical College of Peking University, Beijing 100035, P.R. China
| |
Collapse
|
13
|
Abouhashem NS, Ibrahim DA, Mohamed AM. Prognostic implications of epithelial to mesenchymal transition related proteins (E-cadherin, Snail) and hypoxia inducible factor 1α in endometrioid endometrial carcinoma. Ann Diagn Pathol 2016; 22:1-11. [DOI: 10.1016/j.anndiagpath.2016.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/01/2016] [Accepted: 01/04/2016] [Indexed: 12/11/2022]
|
14
|
Alaee M, Danesh G, Pasdar M. Plakoglobin Reduces the in vitro Growth, Migration and Invasion of Ovarian Cancer Cells Expressing N-Cadherin and Mutant p53. PLoS One 2016; 11:e0154323. [PMID: 27144941 PMCID: PMC4856367 DOI: 10.1371/journal.pone.0154323] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/12/2016] [Indexed: 12/20/2022] Open
Abstract
Aberrant expression of cadherins and catenins plays pivotal roles in ovarian cancer development and progression. Plakoglobin (PG, γ-catenin) is a paralog of β-catenin with dual adhesive and signaling functions. While β-catenin has known oncogenic function, PG generally acts as a tumor/metastasis suppressor. We recently showed that PG interacted with p53 and that its growth/metastasis inhibitory function may be mediated by this interaction. Very little is known about the role of PG in ovarian cancer. Here, we investigated the in vitro tumor/metastasis suppressor effects of PG in ovarian cancer cell lines with mutant p53 expression and different cadherin profiles. We showed that the N-cadherin expressing and E-cadherin and PG deficient ES-2 cells were highly migratory and invasive, whereas OV-90 cells that express E-cadherin, PG and very little/no N-cadherin were not. Exogenous expression of PG or E-cadherin or N-cadherin knockdown in ES-2 cells (ES-2-E-cad, ES-2-PG and ES-2-shN-cad) significantly reduced their migration and invasion. Also, PG expression or N-cadherin knockdown significantly decreased ES-2 cells growth. Furthermore, PG interacted with both cadherins and with wild type and mutant p53 in normal ovarian and ES-2-PG cell lines, respectively.
Collapse
Affiliation(s)
- Mahsa Alaee
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
| | - Ghazal Danesh
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
| | - Manijeh Pasdar
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
- * E-mail:
| |
Collapse
|