1
|
Shakeri M, Aminian A, Mokhtari K, Bahaeddini M, Tabrizian P, Farahani N, Nabavi N, Hashemi M. Unraveling the molecular landscape of osteoarthritis: A comprehensive review focused on the role of non-coding RNAs. Pathol Res Pract 2024; 260:155446. [PMID: 39004001 DOI: 10.1016/j.prp.2024.155446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Osteoarthritis (OA) poses a significant global health challenge, with its prevalence anticipated to increase in the coming years. This review delves into the emerging molecular biomarkers in OA pathology, focusing on the roles of various molecules such as metabolites, noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Advances in omics technologies have transformed biomarker identification, enabling comprehensive analyses of the complex pathways involved in OA pathogenesis. Notably, ncRNAs, especially miRNAs and lncRNAs, exhibit dysregulated expression patterns in OA, presenting promising opportunities for diagnosis and therapy. Additionally, the intricate interplay between epigenetic modifications and OA progression highlights the regulatory role of epigenetics in gene expression dynamics. Genome-wide association studies have pinpointed key genes undergoing epigenetic changes, providing insights into the inflammatory processes and chondrocyte hypertrophy typical of OA. Understanding the molecular landscape of OA, including biomarkers and epigenetic mechanisms, holds significant potential for developing innovative diagnostic tools and therapeutic strategies for OA management.
Collapse
Affiliation(s)
- Mohammadreza Shakeri
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Aminian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammadreza Bahaeddini
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Pouria Tabrizian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Yassin AM, AbuBakr HO, Abdelgalil AI, Farid OA, El-Behairy AM, Gouda EM. Circulating miR-146b and miR-27b are efficient biomarkers for early diagnosis of Equidae osteoarthritis. Sci Rep 2023; 13:7966. [PMID: 37198318 PMCID: PMC10192321 DOI: 10.1038/s41598-023-35207-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/14/2023] [Indexed: 05/19/2023] Open
Abstract
One of the most orthopedic problems seen in the equine is osteoarthritis (OA). The present study tracks some biochemical, epigenetic, and transcriptomic factors along different stages of monoiodoacetate (MIA) induced OA in donkeys in serum and synovial fluid. The aim of the study was the detection of sensitive noninvasive early biomarkers. OA was induced by a single intra-articular injection of 25 mg of MIA into the left radiocarpal joint of nine donkeys. Serum and synovial samples were taken at zero-day and different intervals for assessment of total GAGs and CS levels as well as miR-146b, miR-27b, TRAF-6, and COL10A1 gene expression. The results showed that the total GAGs and CS levels increased in different stages of OA. The level of expression of both miR-146b and miR-27b were upregulated as OA progressed and then downregulated at late stages. TRAF-6 gene was upregulated at the late stage while synovial fluid COL10A1 was over-expressed at the early stage of OA and then decreased at the late stages (P < 0.05). In conclusion, both miR-146b and miR-27b together with COL10A1 could be used as promising noninvasive biomarkers for the very early diagnosis of OA.
Collapse
Affiliation(s)
- Aya M Yassin
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Huda O AbuBakr
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed I Abdelgalil
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Omar A Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza, Egypt
| | - Adel M El-Behairy
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Eman M Gouda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
3
|
Tavallaee G, Rockel JS, Lively S, Kapoor M. MicroRNAs in Synovial Pathology Associated With Osteoarthritis. Front Med (Lausanne) 2020; 7:376. [PMID: 32850892 PMCID: PMC7431695 DOI: 10.3389/fmed.2020.00376] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is the most common type of arthritis, a disease that affects the entire joint. The relative involvement of each tissue, and their interactions, add to the complexity of OA, hampering our understanding of the underlying molecular mechanisms, and the generation of a disease modifying therapy. The synovium is essential in maintaining joint homeostasis, and pathologies associated with the synovium contribute to joint destruction, pain and stiffness in OA. MicroRNAs (miRNAs) are post-transcriptional regulators dysregulated in OA tissues including the synovium. MiRNAs are important contributors to OA synovial changes that have the potential to improve our understanding of OA and to act as novel therapeutic targets. The purpose of this review is to summarize and integrate current published literature investigating the roles that miRNAs play in OA-related synovial pathologies including inflammation, matrix deposition and cell proliferation.
Collapse
Affiliation(s)
- Ghazaleh Tavallaee
- Arthritis Program, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jason S. Rockel
- Arthritis Program, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Starlee Lively
- Arthritis Program, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Mohit Kapoor
- Arthritis Program, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Munjal A, Bapat S, Hubbard D, Hunter M, Kolhe R, Fulzele S. Advances in Molecular biomarker for early diagnosis of Osteoarthritis. Biomol Concepts 2019; 10:111-119. [PMID: 31401621 DOI: 10.1515/bmc-2019-0014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/12/2019] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease. The pathogenesis is poorly understood. What is known is that OA is characterized by imbalance in anabolic and catabolic gene expression in articular chondrocytes. This results in bone on bone articulations resulting in impaired mobility and joint pain. Although the cause of OA is unknown, comorbidities include: aging, obesity, and mechanical stress. Currently the only diagnostic modalities are radiology and physical examination, and early detection is rare. Biomarkers are quantifiable substances, and their presence can be suggestive of a certain phenomenon or disease. Biomarkers are popular for early diagnosis for pathological conditions in the fields of oncology, cardiology, and endocrinology. This review has systematically reviewed the literature about biomarkers in the field of OA, specifically protein, miRNA, and metabolic biomarkers found in the blood, urine, and synovial fluid.
Collapse
Affiliation(s)
- Akul Munjal
- Department of Orthopedics, Augusta University, Augusta, GA
| | - Santul Bapat
- Department of Orthopedics, Augusta University, Augusta, GA
| | - Daniel Hubbard
- Department of Orthopedics, Augusta University, Augusta, GA
| | - Monte Hunter
- Department of Orthopedics, Augusta University, Augusta, GA
| | - Ravindra Kolhe
- Department of Pathology, Augusta University, Augusta, GA
| | - Sadanand Fulzele
- Department of Orthopedics, Augusta University, Augusta, GA.,Institute of Regenerative and Reparative medicine, Augusta University, Augusta, GA
| |
Collapse
|
5
|
Fathollahi A, Aslani S, Jamshidi A, Mahmoudi M. Epigenetics in osteoarthritis: Novel spotlight. J Cell Physiol 2019; 234:12309-12324. [DOI: 10.1002/jcp.28020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/30/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Anwar Fathollahi
- Department of Immunology School of Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
- Rheumatology Research Center, Tehran University of Medical Sciences Tehran Iran
| | - Saeed Aslani
- Rheumatology Research Center, Tehran University of Medical Sciences Tehran Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences Tehran Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
6
|
Hashemi M, Tabasi F, Bahari G, Taheri M, Ansari H. An updated meta-analysis on the association between 4-bp insertion/deletion (rs3783553) polymorphism within the 3`UTR of IL1A and the risk of cancer. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Rogoveanu OC, Calina D, Cucu MG, Burada F, Docea AO, Sosoi S, Stefan E, Ioana M, Burada E. Association of cytokine gene polymorphisms with osteoarthritis susceptibility. Exp Ther Med 2018; 16:2659-2664. [PMID: 30186498 PMCID: PMC6122495 DOI: 10.3892/etm.2018.6477] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 06/20/2018] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is a multifactorial disease characterized by low-grade inflammatory processes that are mediated initially by the cells and factors of the innate immune system. In addition to their key role in inflammation, cytokines contribute to the pathogenesis of OA through angiogenesis and chemotaxis. The purpose of the present case-control study was to investigate a possible association of four cytokine single nucleotide polymorphisms (SNPs), IL-4R -3223C>T (rs2057768), IL-8 -251T>A (rs4073), IL-10 -1082A>G (rs1800896) and TNF -A-308G>A (rs1800629) with OA susceptibility. Genomic DNA was isolated from blood samples collected from 305 Romanian subjects (90 patients with OA and 215 controls) and the genotyping of the SNPs was performed by TaqMan allelic discrimination polymerase chain reaction using predesigned assays. Our data indicated a significant association for IL-4R rs2057768 C>T SNP. The subjects that carried the CT genotype were at a higher risk for OA (OR 2.03, 95% CI: 1.21-3.42, P=0.007) compared with those that had the CC genotype. Furthermore, the carriers of the T allele were at a 1.9 fold higher risk for OA (OR 1.92; 95% CI, 1.17-3.17; P=0.009) in a dominant model. The association remained significant only for knee OA in the subgroups analysis. No correlations were observed between the other remaining SNPs and OA. The results suggested that the IL-4R rs2057768 SNP could contribute to OA susceptibility in the Romanian population, providing novel evidence for the involvement of IL-4/IL-4R pair in the pathogenesis of OA.
Collapse
Affiliation(s)
- Otilia Constantina Rogoveanu
- Department of Physical Medicine and Rehabilitation, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mihai Gabriel Cucu
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Florin Burada
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Simona Sosoi
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Emilian Stefan
- Clinic of Orthopaedics and Traumatology, Clinical Hospital CF2, 011464 Bucharest, Romania
| | - Mihai Ioana
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Emilia Burada
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
8
|
Yang B, Ni J, Long H, Huang J, Yang C, Huang X. IL-1β-induced miR-34a up-regulation inhibits Cyr61 to modulate osteoarthritis chondrocyte proliferation through ADAMTS-4. J Cell Biochem 2018; 119:7959-7970. [PMID: 29236314 DOI: 10.1002/jcb.26600] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/04/2017] [Indexed: 01/13/2023]
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disease with multifactorial etiology caused by risk factors. The degradation of aggrecan by upregulated ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) is the key event in the development of OA. ADAMTS-4 contributes to aggrecan degradation in human OA. Cysteine-rich angiogenic inducer 61 (Cyr61), which is associated with diseases related to chronic inflammation, is found in articular cartilage from patients with osteoarthritis and appears to suppress ADAMTS-4 activity, possibly leading to chondrocyte cloning. Herein, we first revealed that Cyr61 and ADAMTS-4 protein levels were remarkably increased in OA cartilage tissues and OA chondrocytes, and verified Cyr61 regulation of ADAMTS-4 in normal and OA chondrocyte. Further, we revealed that Cyr61 could promote OA chondrocyte proliferation through inhibiting ADAMTS-4. Overproduction of inflammatory cytokines plays a vital role in the pathological development of OA; herein, we demonstrated that IL-1β inhibited Cyr61, while promoted ADAMTS-4 expression. By using online tools and luciferase assays, we confirmed that miR-34a, a regulatory miRNA of chondrocyte proliferation, could directly bind to the 3'-UTR of Cyr61 to inhibit its expression; further, IL-1β regulated Cyr61 and ADAMTS-4 expression through miR-34a. In OA cartilage tissues, miR-34a, and IL-1β mRNA expression was up-regulated and positively correlated; miR-34a and Cyr61 mRNA was positively correlated, further indicating that suppressing miR-34a expression might rescue IL-1β-induced Cyr61 suppression, and promote OA chondrocyte proliferation. Taken together, we provided novel experimental basis for rescuing OA chondrocyte proliferation through miR-34a/Cyr61 axis.
Collapse
Affiliation(s)
- Bo Yang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Jiangdong Ni
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Hui Long
- Department of Pain, The Second Affiliated Hospital of Nanhua University, Hengyang, Hunan, P.R. China
| | - Jun Huang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Cheng Yang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xianzhe Huang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
9
|
Panagopoulos PK, Lambrou GI. The Involvement of MicroRNAs in Osteoarthritis and Recent Developments: A Narrative Review. Mediterr J Rheumatol 2018; 29:67-79. [PMID: 32185303 PMCID: PMC7046075 DOI: 10.31138/mjr.29.2.67] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/12/2018] [Accepted: 03/28/2018] [Indexed: 12/15/2022] Open
Abstract
Background: Osteoarthritis (OA) is the most common chronic joint disease and it may progressively cause disability and compromise quality of life. Lately, the role of miRNAs in the pathogenesis of OA has drawn a lot of attention. miRNAs are small, single-stranded, non-coding molecules of RNA which regulate gene expression at post-transcriptional level. The dysregulation of the expression of several miRNAs affects pathways involved in OA pathogenesis. Objective: The purpose of this article is to review the literature on the involvement of miRNAs in the pathogenesis of OA and the implications on its diagnosis and treatment. Materials and Methods: An extensive electronic literature search was conducted by two researchers from January 2008 to August 2017. Titles and abstracts of papers were screened by the authors for further inclusion in the present work. Finally, full texts of the selected articles were retrieved. Results: Abnormally expressed miRNAs enhance the production of cartilage degrading enzymes, inhibit the expression of cartilage matrix components, increase the production of proinflammatory cytokines, facilitate chondrocyte apoptosis, suppress autophagy in chondrocytes and are involved in pain-related pathways. miRNAs are also incorporated in extra-cellular membranous vesicles such as exosomes and participate in the intercellular communication in osteoarthritic joints. Conclusion: Ongoing research on miRNAs has potential implications in the diagnosis and treatment of OA. Their different levels in peripheral blood and synovial fluid between OA patients and healthy population makes them candidates for being used as biomarkers of the disease, while targeting miRNAs may be a novel therapeutic strategy in OA.
Collapse
Affiliation(s)
- Panagiotis K Panagopoulos
- Postgraduate Program "Metabolic Bone Diseases", National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - George I Lambrou
- Postgraduate Program "Metabolic Bone Diseases", National and Kapodistrian University of Athens, Medical School, Athens, Greece.,First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Athens, Greece
| |
Collapse
|
10
|
Abdel-Hamed AR, Mesbah NM, Ghattas MH, Abo-elmatty DM, Saleh SM. Serum miRNA-122 expression in non-alcoholic fatty liver disease among Egyptian patients and its correlation with interleukin-1A gene polymorphism. Meta Gene 2017. [DOI: 10.1016/j.mgene.2017.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
11
|
Wang P, He Q, Liu C, He SZ, Zhu SY, Li YW, Su W, Xiang ST, Zhao B. Functional polymorphism rs3783553 in the 3'-untranslated region of IL-1A increased the risk of ischemic stroke: A case-control study. Medicine (Baltimore) 2017; 96:e8522. [PMID: 29145255 PMCID: PMC5704800 DOI: 10.1097/md.0000000000008522] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Accumulating evidence indicates interleukin-1 (IL-1) is a critical mediator of inflammatory responses in ischemic stroke (IS). The aim of this study was to investigate whether rs3783553 in the 3'-untranslated region of IL-1A was associated with the risk of IS. In this hospital-based case-control study, we genotyped the rs3783553 using polymerase chain reaction in 316 patients with IS and 332 age, sex, and ethnicity-matched controls. Plasma level of IL-1α was measured by enzyme-linked immunosorbent assay. The relative luciferase activities were measured by the Dual Luciferase assay system. The presence of ins/ins genotype was associated with higher odds ratios (ORs) of IS compared with del/del genotype (ins/ins vs del/del: adjusted OR 1.77, 95% confidence interval [CI] 1.06-2.98; recessive model: adjusted OR 1.69, 95% CI 1.06-2.70). The higher risk of IS was also observed in allele comparison (adjusted OR 1.29, 95% CI 1.00-1.65). Multivariate logistic regression analysis showed that age, hypertension, total cholesterol, triglyceride, low-density lipoprotein, and rs3783553ins/ins genotypes were independent risk factors for IS. Plasma level of IL-1α was higher among IS patients compared with controls (P = .03). Notably, IS patients with the TTCA/TTCA genotype had a higher level of IL-1α compared with those with the del/del genotype (P = .01). Luciferase reporter assay showed that the vector containing the TTCA del allele exhibited a reduced transcriptional activity in the presence of miR-122 and miR-378. These findings indicate that IL-1A rs3783553 ins/ins genotype may increase the susceptibility to IS, possibly by interrupting the binding site of miR-122 and miR-378.
Collapse
|
12
|
van Dalen SCM, Blom AB, Slöetjes AW, Helsen MMA, Roth J, Vogl T, van de Loo FAJ, Koenders MI, van der Kraan PM, van den Berg WB, van den Bosch MHJ, van Lent PLEM. Interleukin-1 is not involved in synovial inflammation and cartilage destruction in collagenase-induced osteoarthritis. Osteoarthritis Cartilage 2017; 25:385-396. [PMID: 27654963 DOI: 10.1016/j.joca.2016.09.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/05/2016] [Accepted: 09/12/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Interleukin-1 (IL-1) is an alleged important cytokine in osteoarthritis (OA), although the exact contribution of IL-1 to joint destruction remains unclear. Here we investigated the involvement of IL-1α and IL-1β in joint pathology during collagenase-induced OA (CiOA). METHODS CiOA was induced in wild type (WT) and IL-1αβ-/- mice. Additionally, IL-1 signaling was inhibited in WT mice with CiOA using osmotic pumps containing IL-1RA. Joint pathology was assessed using histology. Activity of cartilage-degrading enzymes was determined using antibodies against aggrecan neo-epitopes VDIPEN and NITEGE. Synovial gene expression was analyzed using quantitative real-time polymerase chain reaction (qRT-PCR). Serum protein levels were measured with Luminex or enzyme-linked immunosorbent assay (ELISA). RESULTS Synovial IL-1β expression was strongly elevated 7 days after induction of CiOA in WT mice but decreased afterwards, whereas S100A8/A9, previously described to aggravate OA, remained elevated for 21 days. Remarkably, synovial inflammation was comparable between WT and IL-1αβ-/- mice on day 7 of CiOA. In line, synovial mRNA expression of genes involved in IL-1 signaling and inflammatory mediators was comparable between WT and IL-1αβ-/- mice, and serum levels for Keratinocyte Chemoattractant (KC)/IL-6/S100A8/S100A9/IL-10 were equal. Synovial matrix metalloproteinase (MMP)/aggrecanase expression and activity in cartilage was not different in WT and IL-1αβ-/- mice on day 7 of CiOA. Cartilage destruction on day 42 was not different between WT and IL-1αβ-/- mice, which was supported by our finding that IL-1RA treatment in WT mice with CiOA did not alter joint destruction. CONCLUSIONS IL-1α and IL-1β are not involved in synovial inflammation and cartilage destruction during CiOA, implicating that other mediators are responsible for the joint damage.
Collapse
Affiliation(s)
- S C M van Dalen
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - A B Blom
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - A W Slöetjes
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - M M A Helsen
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - J Roth
- Institute of Immunology, University of Münster, Münster, Germany.
| | - T Vogl
- Institute of Immunology, University of Münster, Münster, Germany.
| | - F A J van de Loo
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - M I Koenders
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - P M van der Kraan
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - W B van den Berg
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - M H J van den Bosch
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - P L E M van Lent
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|