1
|
Malaekeh-Nikouei A, Shokri-Naei S, Karbasforoushan S, Bahari H, Baradaran Rahimi V, Heidari R, Askari VR. Metformin beyond an anti-diabetic agent: A comprehensive and mechanistic review on its effects against natural and chemical toxins. Biomed Pharmacother 2023; 165:115263. [PMID: 37541178 DOI: 10.1016/j.biopha.2023.115263] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
In addition to the anti-diabetic effect of metformin, a growing number of studies have shown that metformin has some exciting properties, such as anti-oxidative capabilities, anticancer, genomic stability, anti-inflammation, and anti-fibrosis, which have potent, that can treat other disorders other than diabetes mellitus. We aimed to describe and review the protective and antidotal efficacy of metformin against biologicals, chemicals, natural, medications, pesticides, and radiation-induced toxicities. A comprehensive search has been performed from Scopus, Web of Science, PubMed, and Google Scholar databases from inception to March 8, 2023. All in vitro, in vivo, and clinical studies were considered. Many studies suggest that metformin affects diseases other than diabetes. It is a radioprotective and chemoprotective drug that also affects viral and bacterial diseases. It can be used against inflammation-related and apoptosis-related abnormalities and against toxins to lower their effects. Besides lowering blood sugar, metformin can attenuate the effects of toxins on body weight, inflammation, apoptosis, necrosis, caspase-3 activation, cell viability and survival rate, reactive oxygen species (ROS), NF-κB, TNF-α, many interleukins, lipid profile, and many enzymes activity such as catalase and superoxide dismutase. It also can reduce the histopathological damages induced by many toxins on the kidneys, liver, and colon. However, clinical trials and human studies are needed before using metformin as a therapeutic agent against other diseases.
Collapse
Affiliation(s)
- Amirhossein Malaekeh-Nikouei
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Shokri-Naei
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sobhan Karbasforoushan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Bahari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Heidari
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran; Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Mota Alvidrez RI, Annarapu GK, Srinivasan AJ, Liu Z, Yazdani HO, Simmons RL, Shiva S, Neal MD, Nolfi-Donegan D. High Dose of Metformin Decreases Susceptibility to Occlusive Arterial Thrombosis in Diabetic Mice. RESEARCH SQUARE 2023:rs.3.rs-3143156. [PMID: 37503167 PMCID: PMC10371086 DOI: 10.21203/rs.3.rs-3143156/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Introduction Metformin is the most prescribed medication in Diabetes Mellitus(DM). Metformin has shown to decrease mean platelet volume, with promising antiplatelet effects. High doses of Metformin have also been associated with hypercoagulation. We hypothesize that Metformin will protect DM mice from occlusive arterial thrombus formation by altering platelet activation and mitochondrial bioenergetics. Methods DM was developed by low dose of Streptozotocin, healthy (non-DM) mice are controls. Either vehicle or Metformin was administered twice daily via oral gavage for 7-days. Ferric chloride (FeCl3) arterial thrombosis and tail bleeding time were performed. Whole blood aggregometry, platelet activation/adhesion and mitochondrial bioenergetics were evaluated. Results Metformin decreased susceptibility of DM mice to arterial thrombosis. Platelet bioenergetics show DM mice have increased platelet mitochondrial respiration, but no differences were observed with Metformin treatment. In healthy mice, Metformin modulated ADP-dependent increase in platelet adhesion. In healthy mice, Metformin shortens bleeding time with faster thrombotic occlusion. Metformin also increased platelet mitochondrial maximal respiration and spare respiratory capacity uniquely in healthy mice. Conclusion Metformin regulates platelet bioenergetics and ADP-mediated platelet function in DM mice which attenuates susceptibility to arterial thrombosis. Future studies will evaluate clinically relevant doses of Metformin that regulates thrombotic function in diabetic platelets.
Collapse
Affiliation(s)
| | | | | | - Zeyu Liu
- University of Pittsburgh Medical Center
| | | | | | | | | | | |
Collapse
|
3
|
Kim SH, Baek SI, Jung J, Lee ES, Na Y, Hwang BY, Roh YS, Hong JT, Han SB, Kim Y. Chemical inhibition of TRAF6-TAK1 axis as therapeutic strategy of endotoxin-induced liver disease. Biomed Pharmacother 2022; 155:113688. [PMID: 36150308 DOI: 10.1016/j.biopha.2022.113688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
The liver is exposed to gut-derived bacterial endotoxin via portal circulation, and recognizes it through toll-like receptor 4 (TLR4). Endotoxin lipopolysaccharide (LPS) stimulates the self-ubiquitination of ubiquitin ligase TRAF6, which is linked to scaffold with protein kinase TAK1 for auto-phosphorylation and subsequent activation. TAK1 activity is a signal transducer in the activating pathways of transcription factors NF-κB and AP-1 for production of various cytokines. Here, we hypothesized that TRAF6-TAK1 axis would be implicated in endotoxin-induced liver disease. Following exposure to endotoxin LPS, TLR4-mediated phosphorylation of TAK1 and transcription of cell-death cytokine TNF-α were triggered in Kupffer cells but not in hepatocytes as well as TNF receptor-mediated and caspase-3-executed apoptosis was occurred in D-galactosamine (GalN)-sensitized hepatocytes under co-culture with Kupffer cells. Treatment with pyridinylmethylene benzothiophene (PMBT) improved endotoxin LPS-induced hepatocyte apoptosis in GalN-sensitized C57BL/6 mice via suppressing NF-κB- and AP-1-regulated expression of TNF-α in Kupffer cells, and rescued the mice from hepatic damage-associated bleeding and death. As a mechanism, PMBT directly inhibited Lys 63-linked ubiquitination of TRAF6, and mitigated scaffold assembly between TRAF6 and the TAK1-activator adaptors TAB1 and TAB2 complex in Kupffer cells. Thereby, PMBT interrupted TRAF6 ubiquitination-induced activation of TAK1 activity in the TLR4-mediated signal cascade leading to TNF-α production. However, PMBT did not directly affect the apoptotic activity of TNF-α on GalN-sensitized hepatocytes. Finally, we propose chemical inhibition of TRAF6-TAK1 axis in Kupffer cells as a strategy for treating liver disease due to gut-derived endotoxin or Gram-negative bacterial infection.
Collapse
Affiliation(s)
- Song-Hee Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Seung-Il Baek
- College of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Jihye Jung
- College of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Eung-Seok Lee
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, South Korea
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon 11160, South Korea
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Yoon-Seok Roh
- College of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea
| | - Youngsoo Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28160, South Korea.
| |
Collapse
|
4
|
Zhang J, Huang L, Shi X, Yang L, Hua F, Ma J, Zhu W, Liu X, Xuan R, Shen Y, Liu J, Lai X, Yu P. Metformin protects against myocardial ischemia-reperfusion injury and cell pyroptosis via AMPK/NLRP3 inflammasome pathway. Aging (Albany NY) 2020; 12:24270-24287. [PMID: 33232283 PMCID: PMC7762510 DOI: 10.18632/aging.202143] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/29/2020] [Indexed: 01/15/2023]
Abstract
Ischemia/reperfusion (I/R) injury is a life-threatening vascular emergency following myocardial infarction. Our previous study showed cardioprotective effects of metformin against myocardial I/R injury. In this study, we further examined the involvement of AMPK mediated activation of NLRP3 inflammasome in this cardioprotective effect of metformin. Myocardial I/R injury was simulated in a rat heart Langendorff model and neonatal rat ventricle myocytes (NRVMs) were subjected to hypoxi/reoxygenation (H/R) to establish an in vitro model. Outcome measures included myocardial infarct size, hemodynamic monitoring, myocardial tissue injury, myocardial apoptotic index and the inflammatory response. myocardial infarct size and cardiac enzyme activities. First, we found that metformin postconditioning can not only significantly alleviated myocardial infarct size, attenuated cell apoptosis, and inhibited myocardial fibrosis. Furthermore, metformin activated phosphorylated AMPK, decreased pro-inflammatory cytokines, TNF-α, IL-6 and IL-1β, and decreased NLRP3 inflammasome activation. In isolated NRVMs metformin increased cellular viability, decreased LDH activity and inhibited cellular apoptosis and inflammation. Importantly, inhibition of AMPK phosphorylation by Compound C (CC) resulted in decreased survival of cardiomyocytes mainly by inducing the release of inflammatory cytokines and increasing NLRP3 inflammasome activation. Finally, in vitro studies revealed that the NLRP3 activator nigericin abolished the anti-inflammatory effects of metformin in NRVMs, but it had little effect on AMPK phosphorylation. Collectively, our study confirmed that metformin exerts cardioprotective effects by regulating myocardial I/R injury-induced inflammatory response, which was largely dependent on the enhancement of the AMPK pathway, thereby suppressing NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi 3300063, Nanchang, China
| | - Lelin Huang
- Department of Anesthesiology, Lushan Rehabilitation and Recuperation Center, PLA Joint Service Forces, Jiujiang 3320000, China
| | - Xing Shi
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi 330006, Nanchang, China
| | - Liu Yang
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi 330006, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi 3300063, Nanchang, China
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Wengen Zhu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Xiao Liu
- Department of Cardiology, The Second Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Rui Xuan
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi 330006, Nanchang, China
| | - Yunfeng Shen
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi 330006, Nanchang, China
| | - Jianping Liu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi 330006, Nanchang, China
| | - Xiaoyang Lai
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi 330006, Nanchang, China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi 330006, Nanchang, China
| |
Collapse
|
5
|
Rosell A, Moser B, Hisada Y, Chinthapatla R, Lian G, Yang Y, Flick MJ, Mackman N. Evaluation of different commercial antibodies for their ability to detect human and mouse tissue factor by western blotting. Res Pract Thromb Haemost 2020; 4:1013-1023. [PMID: 32864552 PMCID: PMC7443430 DOI: 10.1002/rth2.12363] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Western blotting is used to measure protein expression in cells and tissues. Appropriate interpretation of resulting data is contingent upon antibody validation. OBJECTIVES We assessed several commercial anti-human and anti-mouse tissue factor (TF) antibodies for their ability to detect TF by western blotting. MATERIAL AND METHODS We used human pancreatic cancer cell lines expressing different levels of TF and a mouse pancreatic cancer cell line expressing TF with a matched knockout derivative. RESULTS Human and mouse TF protein detected by western blotting correlated with levels of TF mRNA in these cell lines. The apparent molecular weight of TF is increased by N-linked glycosylation and, as expected, deglycosylation decreased the size of TF based on western blotting. We found that four commercial anti-human TF antibodies detected TF in a TF-positive cell line HPAF-II whereas no signal was observed in a TF-negative cell line MIA PaCa-2. More variability was observed in detecting mouse TF. Two anti-mouse TF antibodies detected mouse TF in a TF-positive cell line and no signal was observed in a TF knockout cell line. However, a third anti-mouse TF antibody detected a nonspecific protein in both the mouse TF-positive and TF-negative cell lines. Two anti-human TF antibodies that are claimed to cross react with mouse TF either recognized a nonspecific band or did not detect mouse TF. DISCUSSION Our results indicate that there is a range in quality of commercial anti-TF antibodies. CONCLUSION We recommend that all commercial antibodies should be validated to ensure that they detect TF.
Collapse
Affiliation(s)
- Axel Rosell
- Division of Internal MedicineDepartment of Clinical SciencesDanderyd HospitalKarolinska InstitutetStockholmSweden
| | - Bernhard Moser
- Institute of Vascular Biology and Thrombosis ResearchCenter for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Yohei Hisada
- Division of Hematology/OncologyDepartment of MedicineUNC Blood Research CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Rukesh Chinthapatla
- Division of Hematology/OncologyDepartment of MedicineUNC Blood Research CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Grace Lian
- Division of Hematology/OncologyDepartment of MedicineUNC Blood Research CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Yi Yang
- Department of Pathology and Laboratory MedicineUNC Blood Research CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Matthew J. Flick
- Department of Pathology and Laboratory MedicineUNC Blood Research CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Nigel Mackman
- Division of Hematology/OncologyDepartment of MedicineUNC Blood Research CenterUniversity of North Carolina at Chapel HillChapel HillNCUSA
| |
Collapse
|
6
|
Carvalho LML, Ferreira CN, Candido AL, Reis FM, Sóter MO, Sales MF, Silva IFO, Nunes FFC, Gomes KB. Metformin reduces total microparticles and microparticles-expressing tissue factor in women with polycystic ovary syndrome. Arch Gynecol Obstet 2017; 296:617-621. [PMID: 28795250 DOI: 10.1007/s00404-017-4471-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/21/2017] [Indexed: 01/09/2023]
Abstract
PURPOSE The objective of this study was to evaluate the levels of total microparticles (MPs) and microparticles-expressing tissue factor (TFMPs) in women with polycystic ovarian syndrome (PCOS) who use metformin comparing to those who do not take metformin. METHODS We quantified total MPs and TFMPs in the plasma of 50 patients with PCOS-13 of these women used metformin (850 mg 2×/day during at least 6 months) and the other 37 did not. For this purpose, the microparticles (MPs) were purified by differential centrifugation of the plasma and, subsequently, by flow cytometry, using annexin-V and CD142 as markers. RESULTS Total MPs levels were lower in treated patients (59.58 ± 28.43 MPs/µL) when compared to untreated group (97.32 ± 59.42; p = 0.033). Plasma levels of TFMPs were also significantly lower in the group of patients who used metformin (1.10 ± 0.94 MPs/µL) when compared to untreated patients (2.20 ± 1.42 MPs/µL) (p = 0.003). CONCLUSIONS Considering that metformin reduced the levels of total MPs and TFMPs, our results suggest that this mechanism could be involved in the antithrombotic metformin effect, corroborating with the indication of this drug in the PCOS treatment.
Collapse
Affiliation(s)
- Laura M L Carvalho
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cláudia N Ferreira
- Colégio Técnico, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana L Candido
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernando M Reis
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mirelle O Sóter
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Mariana F Sales
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ieda F O Silva
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Fernanda F C Nunes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Karina Braga Gomes
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. .,Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
7
|
Huang Z, Wang Y, Ma K. [Expression and significance of hypoxia-inducible factor 1α in endplate chondrocytes of rats]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:351-356. [PMID: 29806267 DOI: 10.7507/1002-1892.201611129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To explore the expression and significance of hypoxia-inducible factor 1α (HIF-1α) in endplate chondrocytes, and to study the relations between HIF-1α expression and endplate chondrocytes apoptosis. Methods Eight Sprague Dawley rats were selected to obtain the L 1-5 intervertebral disc endplate; the endplate chondrocytes were isolated by enzyme digestion method, and the endplate chondrocytes at passage 3 were cultured under 20% O 2 condition (group A), and under 0.5% O 2 condition (group B). Cell morphology was observed by inverted phase contrast microscope and cell apoptosis was detected using flow cytometry after cultured for 24 hours; the mRNA expression of HIF-1α was detected by real-time fluorescent quantitative PCR, the protein expressions of HIF-1α, Bax, and Bcl-2 by Western blot. Gene clone technology to design and synthesize two siRNAs based on the sequence of HIF-1α mRNA. HIF-1α specific RNAi sequence compound was constructed and transfected into cells. The transfected endplate chondrocytes at passage 3 were cultured under 0.5% O 2 condition in group C and group D (HIF-1α gene was silenced). After cultured for 24 hours, cells were observed via immunofluorescence staining of HIF-1α, and cell apoptosis was detected using flow cytometry. Meanwhile, the mRNA expressions of HIF-1α, collagen type II (COL II), Aggrecan, and SOX9 were detected by real-time fluorescent quantitative PCR, and the protein expressions of HIF-1α, Bax, and Bcl-2 by Western blot. Results At 24 hours after culture, small amount of vacuoles necrotic cells could be observed in group A and group B; there was no significant difference in apoptosis rate between groups A and B ( t=1.026, P=0.471), and HIF-1α mRNA and protein expressions in group B were significantly higher than those in group A ( t=22.672, P=0.015; t=18.396, P=0.013), but, there was no significant difference in protein expressions of Bax and Bcl-2 between groups A and B ( t=0.594, P=0.781; t=1.251, P=0.342). The number of vacuolar necrosis cells in group D was significantly higher than that in group C, and HIF-1α positive cells were observed in group D. The apoptosis rate of group D was significantly higher than that of group C ( t=27.143, P=0.002). The mRNA expressions of HIF-1α, COL II, Aggrecan, and SOX9 in group D were significantly lower than those in group C ( t=21.097, P=0.015; t=34.829, P=0.002; t=18.673, P=0.022; t=31.949, P=0.007). The protein expressions of HIF-1α and Bcl-2 in group D were significantly lower than those in group C ( t=37.648, P=0.006; t=16.729, P=0.036), but the protein expression of Bax in group D was significantly higher than that in group C ( t=25.583, P=0.011). Conclusion HIF-1α mRNA expression is up-regulated under hypoxia condition, which will increase the hypoxia tolerance of endplate chondrocytes. Cell apoptosis is suppressed by the activation of HIF-1α in endplate chondrocytes under hypoxia condition.
Collapse
Affiliation(s)
- Zhigang Huang
- Department of Orthopedics, the Third People's Hospital of Shenzhen, Shenzhen Guangdong, 518112, P.R.China
| | - Yao Wang
- Department of Ultrasound, the Third People's Hospital of Shenzhen, Shenzhen Guangdong, 518112, P.R.China
| | - Ke Ma
- Department of Orthopedics, the Third People's Hospital of Shenzhen, Shenzhen Guangdong, 518112,
| |
Collapse
|