1
|
Fang YD, Liu JY, Xie F, Liu LP, Zeng WW, Wang WH. Antibody preparation and age-dependent distribution of TLR8 in Bactrian camel spleens. BMC Vet Res 2023; 19:276. [PMID: 38104080 PMCID: PMC10725000 DOI: 10.1186/s12917-023-03812-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/10/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Toll-like receptor 8 (TLR8) can recognize specific pathogen-associated molecular patterns and exert multiple immunological functions through activation of signaling cascades. However, the precise distribution and age-related alterations of TLR8 in the spleens of Bactrian camels have not yet been investigated. This study aimed to prepare a rabbit anti-Bactrian camel TLR8 polyclonal antibody and elucidate the distribution of TLR8 in the spleens of Bactrian camels at different age groups. The methodology involved the construction of the pET-28a-TLR8 recombinant plasmid, followed by the expression of TLR8 recombinant protein via prokaryotic expression. Subsequently, rabbits were immunized with the purified protein to prepare the TLR8 polyclonal antibody. Finally, twelve Alashan Bactrian camels were categorized into four groups: young (1-2 years), pubertal (3-5 years), middle-aged (6-16 years) and old (17-20 years). These camels received intravenous sodium pentobarbital (20 mg/kg) anesthesia and were exsanguinated to collect spleen samples. Immunohistochemical techniques were employed to observe and analyze the distribution patterns and age-related changes of TLR8 in the spleen. RESULTS The results showed that the TLR8 recombinant protein was expressed in the form of inclusion body with a molecular weight of 52 kDa, and the optimal induction condition involved 0.3 mmol/L IPTG induction for 8 h. The prepared antibody yielded a titer of 1:32 000, and the antibody demonstrated specific binding to TLR8 recombinant protein. TLR8 positive cells exhibited a consistent distribution pattern in the spleen across different age groups of Bactrian camels, primarily scattered within the periarterial lymphatic sheath of the white pulp, marginal zone, and red pulp. The predominant cell type expressing TLR8 was macrophages, with expression also observed in neutrophils and dendritic cells. Statistical analysis revealed that there were significant differences in the distribution density of TLR8 positive cells among different spleen regions at the same age, with the red pulp, marginal zone, and white pulp showing a descending order (P<0.05). Age-related changes indicated that the distribution density in the marginal zone and red pulp exhibited a similar trend of initially increasing and subsequently decreasing from young to old camels. As camels age, there was a significant decrease in the distribution density across all spleen regions (P<0.05). CONCLUSIONS The results confirmed that this study successfully prepared a rabbit anti-Bactrian camel TLR8 polyclonal antibody with good specificity. TLR8 positive cells were predominantly located in the red pulp and marginal zone of the spleen, signifying their pivotal role in the innate immune response of the spleen. Aging was found to significantly reduce the density of TLR8 positive cells, while leaving their scattered distribution characteristics unaffected. These findings provide valuable support for further investigations into the immunomorphology and immunosenescence of the spleen in Bactrian camels.
Collapse
Affiliation(s)
- Ying-Dong Fang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jing-Yu Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Fei Xie
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Li-Ping Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wei-Wei Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wen-Hui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
2
|
The Bacterial Product Violacein Exerts an Immunostimulatory Effect Via TLR8. Sci Rep 2019; 9:13661. [PMID: 31541142 PMCID: PMC6754391 DOI: 10.1038/s41598-019-50038-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 07/19/2019] [Indexed: 12/28/2022] Open
Abstract
Violacein, an indole-derived, purple-colored natural pigment isolated from Chromobacterium violaceum has shown multiple biological activities. In this work, we studied the effect of violacein in different immune cell lines, namely THP-1, MonoMac 6, ANA-1, Raw 264.7 cells, as well as in human peripheral blood mononuclear cells (PBMCs). A stimulation of TNF-α production was observed in murine macrophages (ANA-1 and Raw 264.7), and in PBMCs, IL-6 and IL-1β secretion was detected. We obtained evidence of the molecular mechanism of activation by determining the mRNA expression pattern upon treatment with violacein in Raw 264.7 cells. Incubation with violacein caused activation of pathways related with an immune and inflammatory response. Our data utilizing TLR-transfected HEK-293 cells indicate that violacein activates the human TLR8 (hTLR8) receptor signaling pathway and not human TLR7 (hTLR7). Furthermore, we found that the immunostimulatory effect of violacein in PBMCs could be suppressed by the specific hTLR8 antagonist, CU-CPT9a. Finally, we studied the interaction of hTLR8 with violacein in silico and obtained evidence that violacein could bind to hTLR8 in a similar fashion to imidazoquinoline compounds. Therefore, our results indicate that violacein may have some potential in contributing to future immune therapy strategies.
Collapse
|
3
|
Cheng WY, He XB, Jia HJ, Chen GH, Jin QW, Long ZL, Jing ZZ. The cGas-Sting Signaling Pathway Is Required for the Innate Immune Response Against Ectromelia Virus. Front Immunol 2018; 9:1297. [PMID: 29963044 PMCID: PMC6010520 DOI: 10.3389/fimmu.2018.01297] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022] Open
Abstract
Activation of the DNA-dependent innate immune pathway plays a pivotal role in the host defense against poxvirus. Cyclic GMP-AMP synthase (cGAS) is a key cytosolic DNA sensor that produces the cyclic dinucleotide cGMP-AMP (cGAMP) upon activation, which triggers stimulator of interferon genes (STING), leading to type I Interferons (IFNs) production and an antiviral response. Ectromelia virus (ECTV) has emerged as a valuable model for investigating the host-Orthopoxvirus relationship. However, the role of cGas-Sting pathway in response to ECTV is not clearly understood. Here, we showed that murine cells (L929 and RAW264.7) mount type I IFN responses to ECTV that are dependent upon cGas, Sting, TANK binding kinase 1 (Tbk1), and interferon regulatory factor 3 (Irf3) signaling. Disruption of cGas or Sting expression in mouse macrophages blocked the type I IFN production and facilitated ECTV replication. Consistently, mice deficient in cGas or Sting exhibited lower type I IFN levels and higher viral loads, and are more susceptible to mousepox. Collectively, our study indicates that the cGas-Sting pathway is critical for sensing of ECTV infection, inducing the type I IFN production, and controlling ECTV replication.
Collapse
Affiliation(s)
- Wen-Yu Cheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiao-Bing He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huai-Jie Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guo-Hua Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qi-Wang Jin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhao-Lin Long
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhi-Zhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
4
|
Vishweswaraiah S, George L, Purushothaman N, Ganguly K. A candidate gene identification strategy utilizing mouse to human big-data mining: "3R-tenet" in COPD genetic research. Respir Res 2018; 19:92. [PMID: 29871630 PMCID: PMC5989378 DOI: 10.1186/s12931-018-0795-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/27/2018] [Indexed: 12/13/2022] Open
Abstract
Background Early life impairments leading to lower lung function by adulthood are considered as risk factors for chronic obstructive pulmonary disease (COPD). Recently, we compared the lung transcriptomic profile between two mouse strains with extreme total lung capacities to identify plausible pulmonary function determining genes using microarray analysis (GSE80078). Advancement of high-throughput techniques like deep sequencing (eg. RNA-seq) and microarray have resulted in an explosion of genomic data in the online public repositories which however remains under-exploited. Strategic curation of publicly available genomic data with a mouse-human translational approach can effectively implement “3R- Tenet” by reducing screening experiments with animals and performing mechanistic studies using physiologically relevant in vitro model systems. Therefore, we sought to analyze the association of functional variations within human orthologs of mouse lung function candidate genes in a publicly available COPD lung RNA-seq data-set. Methods Association of missense single nucleotide polymorphisms, insertions, deletions, and splice junction variants were analyzed for susceptibility to COPD using RNA-seq data of a Korean population (GSE57148). Expression of the associated genes were studied using the Gene Paint (mouse embryo) and Human Protein Atlas (normal adult human lung) databases. The genes were also assessed for replication of the associations and expression in COPD−/mouse cigarette smoke exposed lung tissues using other datasets. Results Significant association (p < 0.05) of variations in 20 genes to higher COPD susceptibility have been detected within the investigated cohort. Association of HJURP, MCRS1 and TLR8 are novel in relation to COPD. The associated ADAM19 and KIT loci have been reported earlier. The remaining 15 genes have also been previously associated to COPD. Differential transcript expression levels of the associated genes in COPD- and/ or mouse emphysematous lung tissues have been detected. Conclusion Our findings suggest strategic mouse-human datamining approaches can identify novel COPD candidate genes using existing datasets in the online repositories. The candidates can be further evaluated for mechanistic role through in vitro studies using appropriate primary cells/cell lines. Functional studies can be limited to transgenic animal models of only well supported candidate genes. This approach will lead to a significant reduction of animal experimentation in respiratory research. Electronic supplementary material The online version of this article (10.1186/s12931-018-0795-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Leema George
- SRM Research Institute, SRM University, Chennai, 603203, India
| | - Natarajan Purushothaman
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM University, Chennai, 603203, India
| | - Koustav Ganguly
- SRM Research Institute, SRM University, Chennai, 603203, India. .,Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 287, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
5
|
Cheng W, Jia H, Wang X, He X, Jin Q, Cao J, Jing Z. Ectromelia virus upregulates the expression of heat shock protein�70 to promote viral replication. Int J Mol Med 2018; 42:1044-1053. [DOI: 10.3892/ijmm.2018.3655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/26/2018] [Indexed: 11/05/2022] Open
Affiliation(s)
- Wenyu Cheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu�730046, P.R.�China
| | - Huaijie Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Xiaoxia Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Xiaobing He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Qiwang Jin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Jingxin Cao
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB�R3E 3R2, Canada
| | - Zhizhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| |
Collapse
|
6
|
Wang CY, Fang YX, Chen GH, Jia HJ, Zeng S, He XB, Feng Y, Li SJ, Jin QW, Cheng WY, Jing ZZ. Analysis of the CDR3 length repertoire and the diversity of T cell receptor α and β chains in swine CD4+ and CD8+ T lymphocytes. Mol Med Rep 2017; 16:75-86. [PMID: 28534993 PMCID: PMC5482108 DOI: 10.3892/mmr.2017.6601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 02/20/2017] [Indexed: 11/13/2022] Open
Abstract
The T cell receptor (TCR) is a complex heterodimer that recognizes fragments of antigens as peptides and binds to major histocompatibility complex molecules. The TCR α and β chains possess three hypervariable regions termed complementarity determining regions (CDR1, 2 and 3). CDR3 is responsible for recognizing processed antigen peptides. Immunoscope spectratyping is a simple technique for analyzing CDR3 polymorphisms and sequence length diversity, in order to investigate T cell function and the pattern of TCR utilization. The present study employed this technique to analyze CDR3 polymorphisms and the sequence length diversity of TCR α and β chains in porcine CD4+ and CD8+ T cells. Polymerase chain reaction products of 19 TCR α variable regions (AV) and 20 TCR β variable regions (BV) gene families obtained from the CD4+ and CD8+ T cells revealed a clear band following separation by 1.5% agarose gel electrophoresis, and each family exhibited >8 bands following separation by 6% sequencing gel electrophoresis. CDR3 spectratyping of all identified TCR AV and BV gene families in the sorted CD4+ and CD8+ T cells by GeneScan, demonstrated a standard Gaussian distribution with >8 peaks. CDR3 in CD4+ and CD8+ T cells demonstrated different expression patterns. The majority of CDR3 recombined in frame and the results revealed that there were 10 and 14 amino acid discrepancies between the longest and shortest CDR3 lengths in specific TCR AV and TCR BV gene families, respectively. The results demonstrated that CDR3 polymorphism and length diversity demonstrated different expression and utilization patterns in CD4+ and CD8+ T cells. These results may facilitate future research investigating the porcine TCR CDR3 gene repertoire as well as the functional complexity and specificity of the TCR molecule.
Collapse
Affiliation(s)
- Chun-Yan Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Yong-Xiang Fang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Guo-Hua Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Huai-Jie Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Shuang Zeng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Xiao-Bing He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Yuan Feng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Shou-Jie Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Qi-Wang Jin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Wen-Yu Cheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Zhi-Zhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| |
Collapse
|
7
|
Paul AM, Acharya D, Le L, Wang P, Stokic DS, Leis AA, Alexopoulou L, Town T, Flavell RA, Fikrig E, Bai F. TLR8 Couples SOCS-1 and Restrains TLR7-Mediated Antiviral Immunity, Exacerbating West Nile Virus Infection in Mice. THE JOURNAL OF IMMUNOLOGY 2016; 197:4425-4435. [PMID: 27798161 DOI: 10.4049/jimmunol.1600902] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/29/2016] [Indexed: 12/11/2022]
Abstract
West Nile virus (WNV) is a neurotropic ssRNA flavivirus that can cause encephalitis, meningitis, and death in humans and mice. Human TLR7 and TLR8 and mouse TLR7 recognize viral ssRNA motifs and induce antiviral immunity. However, the role of mouse TLR8 in antiviral immunity is poorly understood. In this article, we report that TLR8-deficient (Tlr8-/-) mice were resistant to WNV infection compared with wild-type controls. Efficient WNV clearance and moderate susceptibility to WNV-mediated neuronal death in Tlr8-/- mice were attributed to overexpression of Tlr7 and IFN-stimulated gene-56 expression, whereas reduced expression of the proapoptotic gene coding Bcl2-associated X protein was observed. Interestingly, suppressor of cytokine signaling (SOCS)-1 directly associated with TLR8, but not with TLR7, indicating a novel role for TLR8 regulation of SOCS-1 function, whereas selective small interfering RNA knockdown of Socs-1 resulted in induced IFN-stimulated gene-56 and Tlr7 expression following WNV infection. Collectively, we report that TLR8 coupling with SOCS-1 inhibits TLR7-mediated antiviral immunity during WNV infection in mice.
Collapse
Affiliation(s)
- Amber M Paul
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406
| | - Dhiraj Acharya
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406
| | - Linda Le
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406
| | - Penghua Wang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520.,Department of Microbiology and Immunology, School of Medicine, New York Medical College, Valhalla, NY 10595
| | - Dobrivoje S Stokic
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS 39216
| | - A Arturo Leis
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS 39216
| | - Lena Alexopoulou
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, INSERM, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Terrence Town
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520; and.,Howard Hughes Medical Institute, New Haven, CT 06520
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520.,Howard Hughes Medical Institute, New Haven, CT 06520
| | - Fengwei Bai
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406;
| |
Collapse
|
8
|
Wang C, Zhao C, Fu M, Bao W, Qiu L. Molecular cloning, characterization and expression analysis of Toll-like receptor 5M gene in Japanese sea perch (Lateolabrax japonicas) after bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2016; 56:199-207. [PMID: 27417233 DOI: 10.1016/j.fsi.2016.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/27/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
Toll-like receptor 5M belongs to Toll-like receptors (TLRs) family, which plays a crucial role in innate immunity due to its important role in the recognition of bacteria invasion and in the activation of immune related pathways downstream. In the present study, we firstly cloned the full-length cDNAs of TLR 5M (LjTLR 5M) from Japanese sea perch (Lateolabrax japonicas). The full-length cDNAs of LjTLR 5M include an open reading frame (ORF) of 2676 bp encoding a polypeptide of 891 amino acid residues. The deduced amino acid sequence analysis showed that LiTLR 5M contains LRRs (extracellular leucine rich repeats), transmembrane and TIR (Toll/interleukin-1 receptor) domain. Transcriptional expression analysis indicated that LiTLR 5M mRNAs were ubiquitously expressed in wide array of tissues and the peak level was observed in the head-kidney. The expression patterns of LjTLR 5M after Vibro harveyi and Streptococus agalactiae infection were detected by qRT-PCR, and the results showed that LjTLR 5M was significant up-regulated in spleen, liver and head-kidney. Additionally, the expression patterns of LjTLR 5M in infected spleen and head-kidney were further validated by in situ hybridization (ISH). In summary, these findings indicate that LjTLR 5M is significant induced after different bacterial infection and is involved in immune response. Furthermore, this study will provide foundational information for other TLRs research of L. japonicas against different bacterial pathogens invasion.
Collapse
Affiliation(s)
- Chengyang Wang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, 510300, China
| | - Chao Zhao
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, 510300, China
| | - Mingjun Fu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, 510300, China
| | - Weiyang Bao
- College of Environmental Science and Engineering, Yangzhou University, China
| | - Lihua Qiu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, 510300, China; Tropical Aquaculture Research and Development Center of South China Sea Fisheries Research Institute, Sanya, 572018, China.
| |
Collapse
|