1
|
Ma X, Liu T, Guo R, Zhou W, Yao Y, Wen D, Tao J, Zhu J, Wang F, Zhu H, Yang Z. Radioiodinated Nanobody immunoPET probe for in vivo detection of CD147 in pan-cancer. Eur J Nucl Med Mol Imaging 2025; 52:1406-1421. [PMID: 39549046 DOI: 10.1007/s00259-024-06985-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/09/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND To develop the extracellular matrix metalloproteinase inducer (CD147)-targeting therapeutic strategies, accurate detection of CD147 expression in tumors is crucial. Owing to their relatively low molecular weights and high affinities, nanobodies (Nbs) may be powerful candidates for cancer diagnosis and therapy. In this study, we developed a novel CD147-targeted nanobody radiotracer, [124I]I-NB147, which provides guidance for the noninvasive detection of CD147-overexpressing cancers. METHODS CD147 expression in human cancers was detected via immunohistochemistry (IHC) on tissue microarrays (TMAs). Western blot (WB) and flow cytometry were used to screen CD147-positive malignant melanoma (MM), triple-negative breast cancer (TNBC), and pancreatic cancer (PCA) cell lines. The CD147 nanobody (NB147) was labeled with [124I]INa using Iodogen as the oxidizing agent and was purified by the PD-10 column. The physicochemical properties, affinity, metabolic characteristics, biodistribution, and immunoPET imaging of [124I]I-NB147 were evaluated Moreover, [18F]F-FDG was used as a control. Finally, CD147 expression analysis was performed via multiplex immunofluorescence (MxIF) and autoradiography on human cancer specimens and tumor-bearing mice tissues. RESULTS TMAs results revealed that CD147 is highly expressed in MM, TNBC, and PCA. A CD147-specific nanobody, NB147, was successfully generated with excellent in vitro binding characteristics. [124I]I-NB147 was obtained with high radiochemical yield and purity, and was stable for at least 4 h in vitro. WB and FCM revealed that CD147 was positive in A375, MDA-MB-435 and ASPC1 cells, whereas SK-MEL-28, 4T1 and BXPC3 cells presented low expression levels. The radio-ELISA results indicated that [124I]I-NB147 had a high binding affinity to CD147. The uptake of [124I]I-NB147 was significantly different between CD147 high-expression cells and CD147 low-expression cells (P < 0.001). The biological half-life of the distribution and clearance phases were 0.05 h and 1.58 h, respectively. In CD147-positive tumor models, the [124I]I-NB147 accumulated in A375, MDA-MB-435, and ASPC1 tumors, and the uptake value was significantly higher than that of [18F]F-FDG. Uptake in SK-MEL-28, BXPC3, and 4T1 tumors was not clearly observed. Finally, through autoradiography and histological studies, the correlation analysis between tumor uptake and CD147 expression level was determined. CONCLUSIONS The high expression of CD147 in MM, TNBC, and PCA tissuesand in tumor cells was verified. The CD147 nanobody, NB147 was produced and radiolabeled to obtain the immunoPET probe, [124I]I-NB147, which showed high affinity to CD147 and precise visualization for accurate diagnosis of CD147-expressing lesions in different cancers. These results provide insight into the imaging and binding properties of nanobody NB147 over extended periods of time, reinforcing its potential in developing radionuclide therapies for CD147-positive cancer patients.
Collapse
Affiliation(s)
- Xiaokun Ma
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Teli Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Rui Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Wenyuan Zhou
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yuan Yao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Dan Wen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Department of Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637002, Sichuan, China
| | - Jinping Tao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jinyu Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Feng Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Hua Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Zhi Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
2
|
Zhai S, Zhang L, Li X, Yu Q, Liu C. Clustering human dental pulp fibroblasts spontaneously activate NLRP3 and AIM2 inflammasomes and induce IL-1β secretion. Regen Ther 2024; 27:12-20. [PMID: 38487102 PMCID: PMC10937208 DOI: 10.1016/j.reth.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 12/07/2023] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
Objectives The objective of the present study was to investigate whether NOD-like receptor family pyrin domain-containing 3 (NLRP3) and absent in melanoma 2 (AIM2) inflammasomes pathways were involved in an experimental model of fibroblast activation named nemosis, which was used to mimic circumstances without bacteria stimulation. Methods Nemosis of human dental pulp fibroblast (DPFs) was induced by three-dimensional culture in U-shaped 96-well plates and investigated by scanning electron microscopy (SEM). DPFs monolayers were used as control. Annexin V-FITC/7-AAD apoptosis assay was performed on the DPFs spheroids by flowcytometry. Caspase-1 activity detection assay was conducted on the DPFs spheroids. Quantitative real-time polymerase chain reaction (qRT-PCR), cytokine measurements, Western blot and the effect of COX-2 inhibitor on spheroids was studied. Results SEM study observed human dental pulp fibroblast clusters and cell membranes damage on the surface of DPFs spheroids. The percentages of necrotic cells from DPFs spheroids gradually increased as the incubation time increased. A statistically significant increase in caspase-1 activity was observed after DPFs spheroids formation. DPFs spheroids displayed significant amounts of NLRP3, AIM2 mRNA and protein expression, caspase-1 mRNA expression and cleaved Caspase-1 protein expression and high IL-1β concentrations (P < 0.05) than DPFs monolayers. Specific COX-2 inhibitor (NS-398) decreased NLRP3 mRNA and protein expression, cleaved Caspase-1 protein expression, Caspase-1 activity and IL-1β mRNA expression and IL-1β concentrations (P < 0.05). However, Specific COX-2 inhibitor had no impact on AIM2 mRNA and protein expression, caspase-1 mRNA expression and pro-Caspase-1 protein expression. Conclusions In conclusion, clustering human DPFs spontaneously activated NLRP3 and AIM2 inflammasomes and induced IL-1β secretion which could be partially attenuated by COX-2 inhibitor. Thus, nemosis could become a powerful model for studying mechanisms underlying aseptic pulpitis.
Collapse
Affiliation(s)
- Shafei Zhai
- Department of Stomatology, Xi'an Medical University, Xi'an, 710075, Shaanxi Province, China
| | - Lihui Zhang
- Department of Stomatology, Xi'an Medical University, Xi'an, 710075, Shaanxi Province, China
| | - Xue Li
- Department of Stomatology, Xi'an Medical University, Xi'an, 710075, Shaanxi Province, China
| | - Qi Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi Province, China
| | - Changkui Liu
- Department of Stomatology, Xi'an Medical University, Xi'an, 710075, Shaanxi Province, China
| |
Collapse
|
3
|
Huang D, Rao D, Jin Q, Lai M, Zhang J, Lai Z, Shen H, Zhong T. Role of CD147 in the development and diagnosis of hepatocellular carcinoma. Front Immunol 2023; 14:1149931. [PMID: 37090718 PMCID: PMC10115957 DOI: 10.3389/fimmu.2023.1149931] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer, and the third leading cause of cancer-related deaths worldwide. HCC is characterized by insidious onset, and most patients are diagnosed at an advanced stage with a poor prognosis. Identification of biomarkers for HCC onset and progression is imperative to development of effective diagnostic and therapeutic strategies. CD147 is a glycoprotein that is involved in tumor cell invasion, metastasis and angiogenesis through multiple mechanisms. In this review, we describe the molecular structure of CD147 and its role in regulating HCC invasion, metastasis and angiogenesis. We highlight its potential as a diagnostic and therapeutic target for HCC.
Collapse
Affiliation(s)
- Defa Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Dingyu Rao
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qing Jin
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mi Lai
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiali Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Zhonghong Lai
- Department of traumatology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Haibin Shen
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Haibin Shen, ; Tianyu Zhong,
| | - Tianyu Zhong
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Haibin Shen, ; Tianyu Zhong,
| |
Collapse
|
4
|
Wang P, Hao X, Li X, Yan Y, Tian W, Xiao L, Wang Z, Dong J. Curcumin inhibits adverse psychological stress-induced proliferation and invasion of glioma cells via down-regulating the ERK/MAPK pathway. J Cell Mol Med 2021; 25:7190-7203. [PMID: 34169637 PMCID: PMC8335680 DOI: 10.1111/jcmm.16749] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/29/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
Curcumin is a natural polyphenol extracted from the rhizome of Curcuma that has an important antitumour effect, but its effect on adverse psychological stress‐induced tumour proliferation and invasion has not been reported to date. Here, we found that curcumin not only inhibited the growth of xenografts in chronically stressed nude mice, but also decreased the expression of matrix metalloproteinase (MMP)‐2/9 and CD147 in tumour tissues. Exogenous norepinephrine (NE) was used to stimulate glioma cells to simulate the stress environment in vitro, and it was found that curcumin inhibited the NE‐induced proliferation and invasion of glioma cells in a dose‐dependent manner. Further research found that the effects of NE on glioma cells could lead to the activation of the mitogen‐activated protein kinase (MAPK) signalling pathway through β‐adrenergic receptor, while curcumin suppressed the level of extracellular signal–regulated kinase (ERK)1/2 phosphorylation. In addition, blocking ERK1/2 expression with U0126 resulted in the down‐regulated expression of CD147, which further led to the decreased expression of MMP‐2 and MMP‐9. Curcumin could also inhibit the expression of cyclin D1/CDK4/6 and anti‐apoptotic protein Bcl‐2/Bcl‐XL induced by NE, and induced cell cycle changes and increased apoptosis. Therefore, curcumin may be a potential candidate drug for preventing and treating the progression of glioma induced by adverse psychological stress.
Collapse
Affiliation(s)
- Ping Wang
- Department of Molecular Biology and Biochemistry, Weifang Medical University, Weifang, China
| | - Xinwei Hao
- Department of Molecular Biology and Biochemistry, Weifang Medical University, Weifang, China
| | - Xiaohan Li
- Department of Molecular Biology and Biochemistry, Weifang Medical University, Weifang, China
| | - Yizhi Yan
- Department of Molecular Biology and Biochemistry, Weifang Medical University, Weifang, China
| | - Wenxiu Tian
- Department of Molecular Biology and Biochemistry, Weifang Medical University, Weifang, China
| | - Lin Xiao
- Department of Molecular Biology and Biochemistry, Weifang Medical University, Weifang, China
| | - Zhenming Wang
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, China
| | - Junhong Dong
- Department of Molecular Biology and Biochemistry, Weifang Medical University, Weifang, China
| |
Collapse
|
5
|
Mabrouk AA, Tadros MI, El-Refaie WM. Improving the efficacy of Cyclooxegenase-2 inhibitors in the management of oral cancer: Insights into the implementation of nanotechnology and mucoadhesion. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Han H, Zhan Z, Xu J, Song Z. TMEFF2 inhibits pancreatic cancer cells proliferation, migration, and invasion by suppressing phosphorylation of the MAPK signaling pathway. Onco Targets Ther 2019; 12:11371-11382. [PMID: 31920328 PMCID: PMC6939404 DOI: 10.2147/ott.s210619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/30/2019] [Indexed: 12/27/2022] Open
Abstract
PURPOSE This paper studied the effect of TMEFF2 expression on pancreatic cancer and its mechanism. METHODS A total of 72 pancreatic cancer patients were enrolled. AsPC1 and Panc1 cells were transfected. SB203580 was used to treat AsPC1 cells. CCK8 assay, colony formation analysis, Transwell experiment and Tunel test were performed. In vivo studies in nude mice were conducted. Immunohistochemistry, qRT-PCR and Western blot were used to detect genes expression. RESULTS TMEFF2 was downregulated in pancreatic cancer tissues and cells (P<0.001). Low TMEFF2 expression was associated with larger tumor size and advanced stage and poor differentiation (P<0.01). Compared with the NC group, AsPC1 and Panc1 cells of the TMEFF2 group exhibited much lower OD450 values, colony number, tumor volume and weight, migration and invasion cell numbers, obviously higher E-cadherin protein expression, lower Snail, Vimentin, MMP-2 and MMP-9 proteins expression, lower phosphorylation level of MAPK signaling pathway, and more apoptotic cells. AsPC1 cells of the SB203580 group showed much lower OD450 value when compared with the siTMEFF2 group. Significantly decreased colony number, migration and invasion number, higher E-cadherin protein expression and lower Snail, Vimentin, MMP-2 and MMP-9 proteins expression were found in AsPC1 cells of the siTMEFF2+ SB203580 group when compared with the siTMEFF2+ DMSO group. CONCLUSION TMEFF2 inhibits pancreatic cancer cells proliferation, migration, and invasion by suppressing the phosphorylation of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Hongchao Han
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Shanghai No. 10 People’s Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
- Department of General Surgery, Yancheng Third People’s Hospital, Yancheng, People’s Republic of China
| | - Zhilin Zhan
- Department of Hepatobiliary Surgery, Chizhou People’s Hospital, Chizhou, People’s Republic of China
| | - Jie Xu
- Department of General Surgery, Yancheng Third People’s Hospital, Yancheng, People’s Republic of China
| | - Zhenshun Song
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Shanghai No. 10 People’s Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
7
|
Li F, Dai L, Niu J. GPX2 silencing relieves epithelial-mesenchymal transition, invasion, and metastasis in pancreatic cancer by downregulating Wnt pathway. J Cell Physiol 2019; 235:7780-7790. [PMID: 31774184 DOI: 10.1002/jcp.29391] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022]
Abstract
Glutathione peroxidase 2 (GPX2) participates in many cancers including pancreatic cancer (PC), and overexpression of GPX2 promotes tumor growth. Herein, we identified the role of GPX2 in epithelial-mesenchymal transformation (EMT), invasion, and metastasis in PC. Bioinformatics prediction was applied to select PC-related genes. The regulatory function of GPX2 in PC was explored by treatment with short hairpin RNA against GPX2 or LiCl (activator of wingless-type MMTV integration site [Wnt] pathway) in PC cells. GPX2 level in PC tissues, the levels of GPX2, β-catenin, Vimentin, Snail, epithelial-cadherin (E-cadherin), matrix metalloproteinase 2 (MMP2), MMP9, and Wnt2 in cells were determined. Subsequently, cell proliferation, invasion, and metastasis were assayed. Bioinformatics analysis revealed that GPX2 was involved in PC development mediated by the Wnt pathway. GPX2 was highly expressed in PC tissues. GPX2 silencing downregulated levels of β-catenin, Vimentin, Snail, MMP2, MMP9, and Wnt2 but upregulated levels of E-cadherin. It was confirmed that GPX2 silencing suppressed PC cell proliferation, metastasis, and invasion. Furthermore, the trend of EMT and invasion and metastasis of PC induced by the LiCl-activated Wnt pathway was reversed when the GPX2 was silenced. GPX2 silencing could inhibit the Wnt pathway, subsequently suppress PC development.
Collapse
Affiliation(s)
- Fuzhou Li
- Department of Imaging, Linyi People's Hospital, Linyi, China
| | - Lan Dai
- Department of Gynaecology and Obstetrics, Chinese Medicine Hospital of Linyi City, Linyi, China
| | - Jixiang Niu
- Department of General Surgery, Linyi People's Hospital, Linyi, China
| |
Collapse
|
8
|
Zhu XC, Zhang T. Antitumor mechanisms of cyclooxygenase and lipoxygenase. Shijie Huaren Xiaohua Zazhi 2018; 26:2029-2035. [DOI: 10.11569/wcjd.v26.i35.2029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Eicosanoids, as the metabolic product of arachidonic acid, play an important role in tumor development and metastasis. Cyclooxygenase (COX)-2 and lipoxygenase (LOX) are two key enzymes that mediate the metabolism of arachidonic acid. So far, great progress has been made on the research of COX-2 and prostaglandins, and it has been demonstrated that they can induce the imbalance between cell growth and apoptosis as well as tumor angiogenesis. LOX and its metabolites, such as hydroxyeicosatetraenoic acid (HETE) and leukotriene (LT), have received more and more attention for their role in tumor development. Research has proved that LT-B4 and 5-HETE participate in the occurrence and development of multiple tumors. Therefore, COX and LOX dual inhibitors prove a new approach to anti-tumor therapy.
Collapse
Affiliation(s)
- Xiao-Chao Zhu
- Department of General Surgery, Suqian First Hospital, Suqian 223800, Jiangsu Province, China
| | - Tuo Zhang
- Department of General Surgery, Suqian First Hospital, Suqian 223800, Jiangsu Province, China
| |
Collapse
|
9
|
Wu X, Chen W, Cai H, Hu J, Wu B, Jiang Y, Chen X, Sun D, An Y. MiR-216b inhibits pancreatic cancer cell progression and promotes apoptosis by down-regulating KRAS. Arch Med Sci 2018; 14:1321-1332. [PMID: 30393486 PMCID: PMC6209705 DOI: 10.5114/aoms.2018.72564] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/18/2017] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Pancreatic cancer is a highly lethal malignancy with high invasion metastasis, which is difficult to diagnose and treat. MicroRNA-216b (miR-216b) plays an important role in many types of tumors. In this study, we explore how miR-216b affected human pancreatic cancer cell development by targeting KRAS. MATERIAL AND METHODS Expression level of miR-216b and KRAS in tissue samples and cells were detected by RT-PCR and western blot. Immunohistochemical assay analysed the expressions of KRAS protein in tumor and adjacent tissues. The target relationship between miR-216b and KRAS was validated by dual-luciferase reporter assay. Pancreatic cancer cell proliferation, migration, invasion and apoptosis abilities of cells transfected with miR-216b mimics and KRAS-siRNA, Panc-1 were detected by MTT assay, transwell assay and flow cytometry assay respectively. Prognosis of patients with different expression levels of miR-216b and KRAS were analyzed by Kaplan-Meier survival analysis and Cox proportional hazards regression model. RESULTS The expression of miR-216b in pancreatic cancer tissue and cell line was down-regulated (p < 0.01), while KRAS expression was up-regulated (p < 0.01) compared with adjacent normal tissues. Both the expressions of miR-216b and KRAS have a strong influence on prognosis of the pancreatic cancer patients (p = 0.024 and p = 0.017). The dual-luciferase reporter assay verified that miR-216b directly targeted KRAS in pancreatic cancer cells. Overexpression of miR-216b reduced the expression of mRNA and protein of KRAS (p = 0.013 and p = 0.003), but silencing KRAS had no effect on miR-216b expression (p = 0.706). By silencing KRAS or up-regulation of miR-216b could suppress cell proliferation, migration and invasion of pancreatic cancer cells and promote apoptosis. CONCLUSIONS MiR-216b might inhibit pancreatic cancer cell progression and stimulate apoptosis by silencing KRAS.
Collapse
Affiliation(s)
- Xinquan Wu
- Department of Hepatopancreatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Weibo Chen
- Department of Hepatopancreatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Huihua Cai
- Department of Hepatopancreatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jun Hu
- Department of Hepatopancreatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Baoqiang Wu
- Department of Hepatopancreatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Yong Jiang
- Department of Hepatopancreatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xuemin Chen
- Department of Hepatopancreatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Donglin Sun
- Department of Hepatopancreatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Yong An
- Department of Hepatopancreatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
10
|
Wei F, Ding L, Wei Z, Zhang Y, Li Y, Qinghua L, Ma Y, Guo L, Lv G, Liu Y. Ribosomal protein L34 promotes the proliferation, invasion and metastasis of pancreatic cancer cells. Oncotarget 2018; 7:85259-85272. [PMID: 27845896 PMCID: PMC5356734 DOI: 10.18632/oncotarget.13269] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/19/2016] [Indexed: 01/06/2023] Open
Abstract
Ribosomal proteins (RPs) are the main components of ribosomes and participate in the self-assembly of ribosomes and protein synthesis. Recent advance has shown that RPs play important roles in the tumorigenesis and drug resistance of various cancers. However, the expression status and function of RPL34 in pancreatic cancer (PC) remains unclear. In this study, we find that RPL34 is overexpressed in PC tissues and cell lines, which is correlated with decreased methylation of its promoter. Knockdown of RPL34 effectively suppresses the proliferation, colony formation, migration and drug-resistance of PC cells, which are accompanied by cell cycle arrest at the G2 phase and induction of apoptosis. In vivo assays demonstrate that RPL34 silencing inhibits PC tumor growth and metastasis. Moreover, gene expression profiling revealed that RPL34 silencing results in alteration of the MAPK and p53 signaling pathways. Clinically, our data indicate a positive association of RPL34 expression with tumor stage and metastasis in PCs. We revealed that RPL34 acts as a potential onco-protein in PC, and RPL34 may be a promising biomarker for prognosis prediction and a potential target for the treatment of PC.
Collapse
Affiliation(s)
- Feng Wei
- Department of Hepatobiliary & Pancreas Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lijuan Ding
- Department of Hepatobiliary & Pancreas Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhentong Wei
- Oncologic Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yandong Zhang
- Department of Hepatobiliary & Pancreas Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Li
- Department of Hepatobiliary & Pancreas Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Luo Qinghua
- Genetic Engineering Laboratory of PLA, The Eleventh Institute of Academy of Military Medical Sciences of PLA, Jilin 130122, P.R. China
| | - Yuteng Ma
- Department of Hepatobiliary & Pancreas Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Liang Guo
- Pathology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guoyue Lv
- Department of Hepatobiliary & Pancreas Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yan Liu
- Genetic Engineering Laboratory of PLA, The Eleventh Institute of Academy of Military Medical Sciences of PLA, Jilin 130122, P.R. China.,Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
11
|
CD147 silencing inhibits tumor growth by suppressing glucose transport in melanoma. Oncotarget 2018; 7:64778-64784. [PMID: 27556188 PMCID: PMC5323115 DOI: 10.18632/oncotarget.11415] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/15/2016] [Indexed: 12/14/2022] Open
Abstract
Melanoma is a very malignant disease and there are still no effective treatments. CD147 participates in the carcinogenesis of multiple human cancers and GLUT-1, as a glucose transporter, is associated with tumor growth. However, the function of CD147 and GLUT-1 in melanoma have not been completely understood. Thus, in this study we investigated the expression of CD147 and GLUT-1 in melanoma tissue, which were overexpressed compared with that in nevus tissue. In addition, CD147 and GLUT-1 were co-localized in the cytoplasm of human melanoma A375 cells. Immunoprecipitation proved that CD147 interacted with GLUT-1 at D105-199. Silencing CD147 by specific siRNA could downregulate GLUT-1 level via inhibiting PI3K/Akt signaling and decrease glucose uptake in A375 cells. In vivo experiments also supported that CD147 knockdown suppressed the tumor growth in melanoma subcutaneous mice model, observed by micro PET/CT. Our results could help validate CD147 as a new therapeutic target for treating melanoma.
Collapse
|
12
|
Horikawa Y, Watanabe M, Sadahira T, Ariyoshi Y, Kobayashi Y, Araki M, Wada K, Ochiai K, Li SA, Nasu Y. Overexpression of REIC/Dkk-3 suppresses the expression of CD147 and inhibits the proliferation of human bladder cancer cells. Oncol Lett 2017; 14:3223-3228. [PMID: 28927069 DOI: 10.3892/ol.2017.6548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/25/2017] [Indexed: 02/06/2023] Open
Abstract
Our group previously developed an adenoviral vector encoding the REIC/Dkk-3 gene (Ad-REIC), a tumor suppressor, for cancer gene therapy. The Ad-REIC agent induces apoptosis and inhibits invasion in a number of cancer cell lines; however, the molecular mechanisms underlying its effects remain unclear. Cluster of differentiation 147 (CD147), also known as extracellular matrix metalloproteinase inducer (EMMPRIN), is a key molecule that promotes cancer proliferation and invasion. In order to elucidate the therapeutic mechanism of Ad-REIC, its effect on the expression of CD147 in human bladder cancer KK47 cells was investigated. Treatment with Ad-REIC markedly downregulated the expression of CD147 and significantly inhibited cellular proliferation. Since the expression of CD147 is reported to be under the positive control of mitogen-activated protein kinase (MAPK) signaling and the c-Myc protein, the correlations between the expression of CD147 and the activation of MAPKs or the expression of c-Myc were examined. Unexpectedly, no positive correlation was observed between the level of CD147 and the potential regulators that were assessed, indicating that another signaling pathway is responsible for the downregulation of CD147. The results from the present study demonstrate that Ad-REIC treatment can significantly downregulate the expression of CD147 in bladder cancer cells. Downregulation of the cancer-progression factor CD147 may be a novel mechanism that underlies the therapeutic effects of Ad-REIC treatment.
Collapse
Affiliation(s)
- Yuhei Horikawa
- Department of Urology, Okayama University, Okayama 700-8558, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University, Okayama 700-8558, Japan.,Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Takuya Sadahira
- Department of Urology, Okayama University, Okayama 700-8558, Japan
| | - Yuichi Ariyoshi
- Department of Urology, Okayama University, Okayama 700-8558, Japan
| | | | - Motoo Araki
- Department of Urology, Okayama University, Okayama 700-8558, Japan
| | - Koichiro Wada
- Department of Urology, Okayama University, Okayama 700-8558, Japan
| | - Kazuhiko Ochiai
- Department of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Shun-Ai Li
- Department of Urology, Okayama University, Okayama 700-8558, Japan.,Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Yasutomo Nasu
- Department of Urology, Okayama University, Okayama 700-8558, Japan
| |
Collapse
|