1
|
Bret C, Desmots-Loyer F, Moreaux J, Fest T. BHLHE41, a transcriptional repressor involved in physiological processes and tumor development. Cell Oncol (Dordr) 2025; 48:43-66. [PMID: 39254779 PMCID: PMC11850569 DOI: 10.1007/s13402-024-00973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 09/11/2024] Open
Abstract
BHLHE41 is a nuclear transcriptional repressor that belongs to the basic helix-loop-helix protein superfamily. BHLHE41 expression tends to be restricted to specific tissues and is regulated by environmental cues and biological events. BHLHE41 homodimerizes or heterodimerizes with various partners, influencing its transcription factor function. BHLHE41 is involved in the regulation of many physiological processes implicated in tissue/organ homeostasis, such as myogenesis, adipogenesis, circadian rhythms and DNA repair. At cellular level, BHLHE41 is involved in the regulation of mesenchymal stem cell properties, tissue-specific macrophage functions and lymphoid lineage physiology. In several cancer types, BHLHE41 modulates the expression of different transcriptional programs influencing cell cycle control, apoptosis, invasiveness, epithelial to mesenchymal transition and hypoxia response in the tumor environment. Depending on the cancer cell type, BHLHE41 can act as a tumor suppressor or an oncogene, and could be a target for innovative therapies. This review summarizes the available knowledge on BHLHE41 structure, biological functions, regulation and potential partners, as well as its role in physiological processes, and its implication in major cancer steps.
Collapse
Affiliation(s)
- Caroline Bret
- Department of Biological Hematology, CHU Montpellier, Montpellier, 34295, France.
- Faculty of Medicine of Montpellier and Nîmes, University of Montpellier, Montpellier, 34090, France.
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, 34396, France.
| | - Fabienne Desmots-Loyer
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.
- Pôle de Biologie, Rennes University Medical Center, Rennes, France.
| | - Jérôme Moreaux
- Department of Biological Hematology, CHU Montpellier, Montpellier, 34295, France.
- Faculty of Medicine of Montpellier and Nîmes, University of Montpellier, Montpellier, 34090, France.
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, 34396, France.
- Institut Universitaire de France, Paris, France.
| | - Thierry Fest
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.
- Pôle de Biologie, Rennes University Medical Center, Rennes, France.
| |
Collapse
|
2
|
Kooti A, Abuei H, Jaafari A, Taki S, Saberzadeh J, Farhadi A. Activating transcription factor 3 mediates apoptosis and cell cycle arrest in TP53-mutated anaplastic thyroid cancer cells. Thyroid Res 2024; 17:12. [PMID: 39085957 PMCID: PMC11292864 DOI: 10.1186/s13044-024-00202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/19/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND It is believed that loss of p53 function plays a crucial role in the progression of well to poorly differentiated thyroid cancers including anaplastic thyroid carcinoma (ATC). Given the poor prognosis of ATC due to its strong therapeutic resistance, there is a need to establish new therapeutic targets to extend the survival of ATC patients. Activating transcription factor 3 (ATF3) can inhibit the oncogenic activity of mutant p53 and, as a result, contribute to tumor suppression in several TP53-mutated cancers. Herein, we demonstrate that the ectopic overexpression of ATF3 leads to the suppression of oncogenic mutant p53 activity in chemo-resistant 8305 C thyroid cancer cells harboring R273C p53 gene mutation. METHODS The biological behavior of 8305 C cells was assessed pre- and post-transfection with pCMV6-ATF3 plasmid using MTT assay, fluorescent microscopy, cell cycle, and annexin V/PI flow cytometric analysis. The effect of ectopic ATF3 overexpression on the cellular level of p53 was examined by western blotting assay. The mRNA expression levels of TP53, TAp63, ΔNp63, and SHARP1 were evaluated in ectopic ATF3-expressing cells compared to controls. RESULTS The overexpression of ATF3 in 8305 C thyroid cancer cells significantly decreased cell viability and induced apoptosis and cell cycle arrest in vitro. The immunoblotting of p53 protein revealed that ATF3 overexpression significantly increased the level of mutant p53 in 8305C cells compared to mock-transfected control cells. Additionally, elevated mRNA levels of TAp63 and SHARP1 and a decreased mRNA level of ΔNp63 were observed in PCMV6-AC-ATF3-transfected 8305 C cells with significant differences compared to the mock and untreated cells. CONCLUSION In light of our findings, it is evident that therapeutic strategies aimed at increasing ATF3 expression or enhancing the interaction between ATF3 and mutant p53 can be a promising approach for the treatment of p53-mutated metastatic thyroid cancer.
Collapse
Affiliation(s)
- Abolfazl Kooti
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haniyeh Abuei
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Jaafari
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shayan Taki
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamileh Saberzadeh
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Farhadi
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, 7143918596, Iran.
| |
Collapse
|
3
|
Furukawa T, Mimami K, Nagata T, Yamamoto M, Sato M, Tanimoto A. Approach to Functions of BHLHE41/DEC2 in Non-Small Lung Cancer Development. Int J Mol Sci 2023; 24:11731. [PMID: 37511489 PMCID: PMC10380948 DOI: 10.3390/ijms241411731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
The circadian rhythm-related genes BHLHE40/DEC1 and BHLHE41/DEC2 have various functions under different cell and tissue conditions. BHLHE41/DEC2 has been reported to be both a cancer-suppressive and an oncogenic gene during cancer development. The effects of BHLHE41/DEC2 on differentiation have been examined using Bhlhe41/Dec2 knockout mice and/or in vitro differentiation models, and research has been conducted using genetic analysis of tumor cells, in vitro analysis of cancer cell lines, and immunohistochemical studies of the clinical samples. We summarize some of these studies, detail several problems, and consider possible reasons for contradictory results and the needs for further research.
Collapse
Affiliation(s)
- Tatsuhiko Furukawa
- Department of Pathology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kentaro Mimami
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara Kiyotake cho, Miyazaki 889-1692, Japan
| | - Toshiyuki Nagata
- Department of General Thoracic Surgery, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Masatasu Yamamoto
- Department of Molecular Oncology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Masami Sato
- Department of General Thoracic Surgery, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Akihide Tanimoto
- Department of Pathology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| |
Collapse
|
4
|
BHLHE41 Overexpression Alleviates the Malignant Behavior of Colon Cancer Cells Induced by Hypoxia via Modulating HIF-1α/EMT Pathway. Gastroenterol Res Pract 2022; 2022:6972331. [PMID: 35615737 PMCID: PMC9126723 DOI: 10.1155/2022/6972331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/07/2022] [Accepted: 03/25/2022] [Indexed: 12/09/2022] Open
Abstract
Objective. BHLHE41 has been shown to be a marker of tumorigenesis. Colon cancer (CC) is a common malignant tumor of colonic mucosa. This study mainly explored the mechanism of BHLHE41 in alleviating malignant behavior of hypoxia-induced CC cells. Methods. The levels of BHLHE41 in CC and normal cell lines were tested by Western blot and qRT-PCR. After, CC cells were subjected to hypoxia treatment and BHLHE41 overexpression transfection, and the BHLHE41 expression, the effect of BHLHE41 on CC cell viability, apoptosis, migration, and invasion and cell cycle were tested by qRT-PCR and relevant cell functional experiments. HIF-1α and epithelial-mesenchymal transition- (EMT-) related proteins were tested by Western blot. Moreover, CC tumor-bearing model was established in nude mice, and the effect of BHLHE41 on the tumor was evaluated by measuring the tumor volume and weight. Then, the expressions of BHLHE41 and EMT-related proteins were detected by immunohistochemistry and Western blot. Results. Western blot and qRT-PCR showed that BHLHE41 was lowly expressed in CC cells. BHLHE41 overexpression could inhibit the hypoxia-induced CC cell viability, migration, and invasion, induce apoptosis, and alter cell cycle. Besides, BHLHE41 overexpression could enhance the levels of E-cadherin but reduce the levels of HIF-1α, N-cadherin, vimentin, and MMP9 in hypoxia-induced CC cells. Moreover, BHLHE41 overexpression reduced tumor volume, weight, and EMT-related proteins levels in tumor tissues. Conclusions. BHLHE41 overexpression could mitigate the malignant behavior of hypoxia-induced CC via modulating the HIF-1α/EMT pathway.
Collapse
|
5
|
Multifunctional liposomal nanostructure-mediated siRNA/bortezomib co-delivery for SHARP1 knockdown in MLL-AF6 acute myeloid leukemia. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112663. [DOI: 10.1016/j.msec.2022.112663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/17/2022]
|
6
|
Zhang D, Zheng Q, Wang C, Zhao N, Liu Y, Wang E. BHLHE41 suppresses MCF-7 cell invasion via MAPK/JNK pathway. J Cell Mol Med 2020; 24:4001-4010. [PMID: 32073238 PMCID: PMC7171311 DOI: 10.1111/jcmm.15033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/16/2019] [Accepted: 12/17/2019] [Indexed: 11/27/2022] Open
Abstract
Deregulation of the basic helix‐loop‐helix family member e41 (BHLHE41) has been characterized as a marker of progression of several cancers. In this study, we aimed to explore the mechanism by which BHLHE41 regulates the invasion of breast cancer cells. BHLHE41 suppresses, whereas the silencing of BHLHE41 promotes tumour invasion of both MCF‐7 and MDA‐MB‐231 cells. Meanwhile, BHLHE41 down‐regulated the transcription and translation of SNAI1, SNAI2, VIM and CDH2, and up‐regulated those of CLDN1, CLDN4 and CDH1. Reporter assay indicated that silencing of BHLHE41 dramatically activated the MAPK/JNK signalling pathway in MCF‐7 cell line and the hypoxia signalling pathway in MDA‐MB‐231 cell line. Furthermore, silencing of BHLHE41 activated the MAPK/JNK signalling pathway by up‐regulating phosphorylated JNK and failed to affect the expression of HIF‐1 alpha in MCF‐7 cells. After blocking the MAPK/JNK signalling pathway by specific inhibitor SP600125, silencing of BHLHE41 failed to promote tumour cell invasion. These results suggest that BHLHE41 facilitates MCF‐7 cell invasion mainly via the activation of MAPK/JNK signalling pathway. In conclusion, although BHLHE41 suppresses tumour invasion in MCF‐7 and MDA‐MB‐231 cell lines, the specific regulatory mechanisms may be different.
Collapse
Affiliation(s)
- Di Zhang
- Department of Pathology, The First Affiliated Hospital, China Medical University, Shenyang, China.,Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Qin Zheng
- Department of Pathology, The First Affiliated Hospital, China Medical University, Shenyang, China.,Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Chen Wang
- Department of Pathology, The First Affiliated Hospital, China Medical University, Shenyang, China.,Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Na Zhao
- Department of Pathology, The First Affiliated Hospital, China Medical University, Shenyang, China.,Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yang Liu
- Department of Pathology, The First Affiliated Hospital, China Medical University, Shenyang, China.,Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Enhua Wang
- Department of Pathology, The First Affiliated Hospital, China Medical University, Shenyang, China.,Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|