1
|
Hankins GR, Harris RT. The Opioid Growth Factor in Growth Regulation and Immune Responses in Cancer. ADVANCES IN NEUROBIOLOGY 2024; 35:45-85. [PMID: 38874718 DOI: 10.1007/978-3-031-45493-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
It has become apparent that endogenous opioids act not only as neurotransmitters and neuromodulators, but have multiple functions in the body. Activation of the opioid system by opiate drugs is associated with a risk of cancer development through direct stimulation of tumor cell proliferation and through immunosuppression. In contrast, the endogenous peptide opioid [Met5]-enkephalin, now commonly referred to as Opioid Growth Factor (OGF), negatively regulates cell proliferation in a wide number of cells during development, homeostasis, and neoplasia. This action is mediated through the opioid growth factor receptor, originally designated the zeta (ζ) opioid receptor. Further, contrary to the traditional notion of opiates as immunosuppressive, endogenous OGF has been shown to possess a number of positive immunomodulatory properties and may provide a beneficial effect in cancer by augmenting the activity of cells involved in both innate and acquired immunity. Taken together, the evidence supports consideration of opioid peptides such as OGF as new strategies for cancer therapy.
Collapse
Affiliation(s)
- Gerald R Hankins
- Department of Biology, West Virginia State University, Institute, WV, USA.
| | - Robert T Harris
- Department of Biology, West Virginia State University, Institute, WV, USA
| |
Collapse
|
2
|
Qu N, Meng Y, Zhai J, Griffin N, Shan Y, Gao Y, Shan F. Methionine enkephalin inhibited cervical cancer migration as well as invasion and activated CD11b + NCR1 + NKs of tumor microenvironment. Int Immunopharmacol 2023; 124:110967. [PMID: 37741126 DOI: 10.1016/j.intimp.2023.110967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
This study was to study the role of methionine enkephalin (menk) in cell invasion and migration as well as NK cells activation of tumor microenvironment in cervical cancer. The results showed that menk inhibited cervical cancer migration and invasion. In addition, we found menk affected epithelial to mesenchymal transition (EMT) related indicators, with increasing E-cadherin level, decreasing N-cadherin and vimentin level. Through in vivo mouse model, we found that menk IFNγ and NKP46 expression was upregulated in tumor tissues by menk compared with controls, while LAG3 expression was inhibited by menk, besides, there was an upregulation of CD11b+ NCR1+ NKs of tumor microenvironment in cervical cancer. Therefore, we concluded that menk inhibited cancer migration and invasion via affecting EMT related indicators and activated CD11b+ NCR1+ NKs of tumor microenvironment in cervical cancer, laying a theoretical foundation for the further clinical treatment of menk.
Collapse
Affiliation(s)
- Na Qu
- Department of Gynecological Radiotherapy Ward, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Institute and Hospital), No. 44, Xiaoheyan Road, Shenyang 110042, Liaoning Province, China
| | - Yiming Meng
- Central Laboratory, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Institute and Hospital), No. 44, Xiaoheyan Road, Shenyang 110042, Liaoning Province, China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Noreen Griffin
- Biostax Inc. 1317 Edgewater Dr., Ste 4882, Orlando, FL 32804, USA
| | - Yuanye Shan
- Biostax Inc. 1317 Edgewater Dr., Ste 4882, Orlando, FL 32804, USA
| | - Yuhua Gao
- Department of Gynecological Radiotherapy Ward, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Institute and Hospital), No. 44, Xiaoheyan Road, Shenyang 110042, Liaoning Province, China.
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 77, Puhe Road, Shenyang 110122, Liaoning Province, China.
| |
Collapse
|
3
|
Sánchez ML, Rodríguez FD, Coveñas R. Involvement of the Opioid Peptide Family in Cancer Progression. Biomedicines 2023; 11:1993. [PMID: 37509632 PMCID: PMC10377280 DOI: 10.3390/biomedicines11071993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Peptides mediate cancer progression favoring the mitogenesis, migration, and invasion of tumor cells, promoting metastasis and anti-apoptotic mechanisms, and facilitating angiogenesis/lymphangiogenesis. Tumor cells overexpress peptide receptors, crucial targets for developing specific treatments against cancer cells using peptide receptor antagonists and promoting apoptosis in tumor cells. Opioids exert an antitumoral effect, whereas others promote tumor growth and metastasis. This review updates the findings regarding the involvement of opioid peptides (enkephalins, endorphins, and dynorphins) in cancer development. Anticancer therapeutic strategies targeting the opioid peptidergic system and the main research lines to be developed regarding the topic reviewed are suggested. There is much to investigate about opioid peptides and cancer: basic information is scarce, incomplete, or absent in many tumors. This knowledge is crucial since promising anticancer strategies could be developed alone or in combination therapies with chemotherapy/radiotherapy.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
| | - Francisco D Rodríguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37007 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
4
|
Research progress of opioid growth factor in immune-related diseases and cancer diseases. Int Immunopharmacol 2021; 99:107713. [PMID: 34426103 DOI: 10.1016/j.intimp.2021.107713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022]
Abstract
Methionine enkephalin (MENK) has an important role in both neuroendocrine and immune systems. MENK was known as an opioid growth factor (OGF) for its growth regulatory characteristics. OGF interacts with the OGF receptor (OGFr) to inhibit DNA synthesis by upregulating p16 and/or p21, which delays the cell cycle transition from G0/G1 to S phase, and inhibits cell proliferation. In addition, OGF combines with OGFr in immune cells to exert its immunomodulatory activity and regulate immune function. OGF has been studied as an immunomodulator in a variety of autoimmune diseases, including multiple sclerosis, inflammatory bowel disease, diabetes and viral infections, and has been proven to relieve symptoms of certain diseases in animal and in vitro experiments. Also, OGF and OGFr have various anti-tumor molecular mechanisms. OGF can be used as the primary therapy alone or combined with other drugs to treat tumors. This article summarizes the research progress of OGF in immune-related diseases and cancer diseases.
Collapse
|
5
|
Chen X, Dai J, Li D, Huang X, Qu C. Effects of Pulsed Radiofrequency with Different Temperature on Model Rats of Chronic Constriction Injury. PAIN MEDICINE 2021; 22:1612-1618. [PMID: 33620466 DOI: 10.1093/pm/pnab045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVES The treatment for neuropathic pain is still a big challenge. Pulsed radiofrequency technique has been widely used to relieve neuropathic pain in recent years. The purpose of this study is to optimize the temperature for pulsed radiofrequency therapy. DESIGN Animal, experimental study. METHODS Seventy-five male SD rats were randomly divided into five groups: Sham operation group (Sham group), chronic constriction injury group (CCI group), PRF 42°C group (P42 group), PRF 50°C group (P50 group), and PRF 60°C group (P60 group). The hindpaw withdrawal threshold (HWT), paw thermal withdrawal latency (PTWL), sciatic nerve structure, and the concentration of spinal methionine enkephalin(M-ENK) were detected to identify which temperature is the best for PRF treatment. RESULTS PRF at 42°C, 50°C and 60°C significantly alleviated the pain in CCI rats. The therapeutic effects of 50°C and 60°C were similar, and both were better than 42°C. In addition, PRF using 42°C, 50°C, and 60°C mediated nerve injury to sciatic nerve were grade 1, 1, and 2, respectively. The concentration of M-ENK in spinal cord increased accompanying with the increasing of the temperature of PRF. CONCLUSIONS PRF using 50°C could induce less damage while achieving better improvement of mechanical and thermal pain threshold than 42°C and 60°C in CCI rats, which may be achieved by promoting the expression of M-ENK in spinal cord.
Collapse
Affiliation(s)
- Xun Chen
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, China.,Department of Anesthesiology Management, Chongqing Nan'an District People's Hospital, Chongqing, China.,Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Jianbo Dai
- Department of surgery Management, Chongqing Nan'an District People's Hospital, Chongqing, China
| | - Dan Li
- Department of Stomatology Management, Chongqing Tongnan District People's Hospital, Chongqing, China
| | - Xingliang Huang
- Department of Respiratory and Critical Care Medicine Management, Chongqing Tongnan District People's Hospital, Chongqing, China
| | - Cehua Qu
- Department of Pain Management, The Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, China
| |
Collapse
|
6
|
Zhang S, Huang H, Handley M, Griffin N, Bai X, Shan F. A novel mechanism of lung cancer inhibition by methionine enkephalin through remodeling the immune status of the tumor microenvironment. Int Immunopharmacol 2021; 99:107999. [PMID: 34315116 DOI: 10.1016/j.intimp.2021.107999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 12/25/2022]
Abstract
This study examined the antitumor effect of methionine enkephalin (MENK) against lung cancer in vivo and in vitro and explored the underlying mechanisms. Changes in the immune status of the tumor microenvironment (TME) in response to MENK administration were examined in mice. MENK significantly inhibited the proliferation of lung cancer cells in vivo and in vitro by regulating the Wnt/β-catenin pathway and causing cell cycle arrest at the G0/G1 phase. Knockdown of opioid growth factor receptor abolished the effect of MENK on lung cancer cells. The immune status of the TME of mice differed between the MENK and control groups. MENK increased the infiltration of M1-type macrophages, natural killer cells, CD8+ T cells, CD4+ T cells, and dendritic cells into the TME, and decreased the proportion of myeloid inhibitory cells and M2-type macrophages. Immunohistochemical analysis of the expression of cytokines in the TME showed that MENK upregulated IL-15, IL-21, IFN-γ, and granzyme B and downregulated IL-10 and TGF-β1 in mice. Taken together, these finding indicate that MENK may be a potential agent for lung cancer treatment in the future, especially for overcoming immune escape and immune resistance.
Collapse
Affiliation(s)
- Shuling Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China; Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Hai Huang
- Department of Orthopedic Oncology, the People's Hospital of Liaoning Province, Shenyang 110016, China
| | - Mike Handley
- Cytocom Inc, 3001 Aloma Ave., Winter Park, FL 32792, USA
| | - Noreen Griffin
- Cytocom Inc, 3001 Aloma Ave., Winter Park, FL 32792, USA
| | - Xueli Bai
- Department of Gynecology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110004, China.
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China.
| |
Collapse
|
7
|
Scheau C, Draghici C, Ilie MA, Lupu M, Solomon I, Tampa M, Georgescu SR, Caruntu A, Constantin C, Neagu M, Caruntu C. Neuroendocrine Factors in Melanoma Pathogenesis. Cancers (Basel) 2021; 13:cancers13092277. [PMID: 34068618 PMCID: PMC8126040 DOI: 10.3390/cancers13092277] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Melanoma is a very aggressive and fatal malignant tumor. While curable if diagnosed in its early stages, advanced melanoma, despite the complex therapeutic approaches, is associated with one of the highest mortality rates. Hence, more and more studies have focused on mechanisms that may contribute to melanoma development and progression. Various studies suggest a role played by neuroendocrine factors which can act directly on tumor cells, modulating their proliferation and metastasis capability, or indirectly through immune or inflammatory processes that impact disease progression. However, there are still multiple areas to explore and numerous unknown features to uncover. A detailed exploration of the mechanisms by which neuroendocrine factors can influence the clinical course of the disease could open up new areas of biomedical research and may lead to the development of new therapeutic approaches in melanoma. Abstract Melanoma is one of the most aggressive skin cancers with a sharp rise in incidence in the last decades, especially in young people. Recognized as a significant public health issue, melanoma is studied with increasing interest as new discoveries in molecular signaling and receptor modulation unlock innovative treatment options. Stress exposure is recognized as an important component in the immune-inflammatory interplay that can alter the progression of melanoma by regulating the release of neuroendocrine factors. Various neurotransmitters, such as catecholamines, glutamate, serotonin, or cannabinoids have also been assessed in experimental studies for their involvement in the biology of melanoma. Alpha-MSH and other neurohormones, as well as neuropeptides including substance P, CGRP, enkephalin, beta-endorphin, and even cellular and molecular agents (mast cells and nitric oxide, respectively), have all been implicated as potential factors in the development, growth, invasion, and dissemination of melanoma in a variety of in vitro and in vivo studies. In this review, we provide an overview of current evidence regarding the intricate effects of neuroendocrine factors in melanoma, including data reported in recent clinical trials, exploring the mechanisms involved, signaling pathways, and the recorded range of effects.
Collapse
Affiliation(s)
- Cristian Scheau
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (C.C.)
| | - Carmen Draghici
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Mihaela Adriana Ilie
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Mihai Lupu
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Iulia Solomon
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Mircea Tampa
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.T.); (S.R.G.)
| | - Simona Roxana Georgescu
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.T.); (S.R.G.)
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
- Correspondence:
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 076201 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (C.C.)
- Department of Dermatology, “Prof. N. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
8
|
Assis MA, Carranza PG, Ambrosio E. A "Drug-Dependent" Immune System Can Compromise Protection against Infection: The Relationships between Psychostimulants and HIV. Viruses 2021; 13:v13050722. [PMID: 33919273 PMCID: PMC8143316 DOI: 10.3390/v13050722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/31/2023] Open
Abstract
Psychostimulant use is a major comorbidity in people living with HIV, which was initially explained by them adopting risky behaviors that facilitate HIV transmission. However, the effects of drug use on the immune system might also influence this phenomenon. Psychostimulants act on peripheral immune cells even before they reach the central nervous system (CNS) and their effects on immunity are likely to influence HIV infection. Beyond their canonical activities, classic neurotransmitters and neuromodulators are expressed by peripheral immune cells (e.g., dopamine and enkephalins), which display immunomodulatory properties and could be influenced by psychostimulants. Immune receptors, like Toll-like receptors (TLRs) on microglia, are modulated by cocaine and amphetamine exposure. Since peripheral immunocytes also express TLRs, they may be similarly affected by psychostimulants. In this review, we will summarize how psychostimulants are currently thought to influence peripheral immunity, mainly focusing on catecholamines, enkephalins and TLR4, and shed light on how these drugs might affect HIV infection. We will try to shift from the classic CNS perspective and adopt a more holistic view, addressing the potential impact of psychostimulants on the peripheral immune system and how their systemic effects could influence HIV infection.
Collapse
Affiliation(s)
- María Amparo Assis
- Facultad de Ciencias Médicas, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero G4200, Argentina;
- Laboratorio de Biología Molecular, Inmunología y Microbiología, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero G4206, Argentina
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
- Correspondence:
| | - Pedro Gabriel Carranza
- Facultad de Ciencias Médicas, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero G4200, Argentina;
- Laboratorio de Biología Molecular, Inmunología y Microbiología, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero G4206, Argentina
- Facultad de Agronomía y Agroindustrias, Universidad Nacional de Santiago del Estero, Santiago del Estero G4206, Argentina
| | - Emilio Ambrosio
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
| |
Collapse
|
9
|
Qu N, Wang X, Meng Y, Shan F. Prospective oncotarget for gynecological cancer: Opioid growth factor (OGF) - opioid growth factor receptor (OGFr) axis. Int Immunopharmacol 2019; 75:105723. [PMID: 31408839 DOI: 10.1016/j.intimp.2019.105723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023]
Abstract
The standard treatments for neoplasia include surgery, chemotherapy, hormone antagonists and radiotherapy, which can prolong survival, but rarely cure the tumors of gynecological cancer patients. OGF - OGFr expression, in various gynecologic cells and tissues, is an intersection point between cell development, neuroendocrine function and immune modulation. It has been identified that OGF and OGFr expression differs between gynecological tumor and normal cells. Further, exogenous or endogenous OGF and OGFr antagonists have been known to have a role in regulating cell viability and apoptosis. Moreover, the expression of proteins in the OGF - OGFr axis modulate differentiation and membrane expression of immune cells, which can enhance the immune response. In vivo and in vitro assays have shown that OGF and OGFr antagonists inhibit mitosis as well as induce apoptosis in gynecologic cancer cells. Although immune augmentation combination therapies can intensify cytotoxic activity, OGF or OGFr antagonists do not increase toxicities associated with dual-immune regulation. In conclusion, the OGF - OGFr axis provides significant strategies for antitumor efficiency in gynecological cancer.
Collapse
Affiliation(s)
- Na Qu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Shenyang 110042, Liaoning Province, China
| | - Xiaobin Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Shenyang 110042, Liaoning Province, China
| | - Yiming Meng
- Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Shenyang 110042, Liaoning Province, China
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 77, Puhe Road, Shenyang 110122, China.
| |
Collapse
|
10
|
Wang X, Jiao X, Meng Y, Chen H, Griffin N, Gao X, Shan F. Methionine enkephalin (MENK) inhibits human gastric cancer through regulating tumor associated macrophages (TAMs) and PI3K/AKT/mTOR signaling pathway inside cancer cells. Int Immunopharmacol 2018; 65:312-322. [PMID: 30343258 DOI: 10.1016/j.intimp.2018.10.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 02/07/2023]
Abstract
This study was to explore the effect and mechanisms of anti- human gastric cancer by MENK in vitro and in vivo. The results showed in MENK-treated xenograft tissue, the percentage of M2-type macrophages decreased while M1-type macrophages increased. MENK increased the expression of M1-related cytokine TNF-α and attenuated the expression of M2-related cytokine IL-10 expression. MENK upregulated the expression of opioid receptor (OGFr), while it inhibited HGC27 and SGC7901 cells through blocking PI3K/AKT/mTOR signal pathway in vitro and in vivo. These effects of MENK could be cancelled when OGFr was knockdown. This indicates that binding to OGFr by MENK appears to be essential for the anti- GC cells. Therefore, it is concluded that MENK might skew macrophage toward M2 phenotype from M1 phenotype within tumor and induce cells apoptosis though blocking OGFr/PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiaonan Wang
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Xue Jiao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Yiming Meng
- Central Laboratory, Cancer Hospital of China Medical University, Shenyang 110042, China
| | - Hao Chen
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Noreen Griffin
- Immune Therapeutics, Inc., 37 North Orange Avenue, Suite 607, Orlando, FL 32801, USA
| | - Xinghua Gao
- Department of Dermatology, No. 1 Teaching Hospital, China Medical University, Shenyang, 110016, China
| | - Fengping Shan
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang 110122, China.
| |
Collapse
|
11
|
Wang X, Tian J, Jiao X, Geng J, Wang R, Liu N, Gao X, Griffin N, Gao Y, Shan F. The novel mechanism of anticancer effect on gastric cancer through inducing G0/G1 cell cycle arrest and caspase-dependent apoptosis in vitro and in vivo by methionine enkephalin. Cancer Manag Res 2018; 10:4773-4787. [PMID: 30425572 PMCID: PMC6201847 DOI: 10.2147/cmar.s178343] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Gastric cancer (GC) is the second cause of cancer-related deaths. Methionine enkephalin (MENK), an endogenous opioid peptide, has immunological and antitumor activity. Purpose The aim of this work was to investigate whether MENK could exhibit activity against human GC in vitro and in vivo. Materials and methods Human GC cells were treated with MENK. Cell viability, colony formation, cell morphology, cell cycle, and apoptosis were assessed. The effects of MENK on gene expression of OGFr, Bax, BCL-2, caspase-3, PARP, Ki67, cyclin D1, c-myc, survivin were quantifed by qRT-PCR. Western blot was used to analyze the effects of MENK on protein expression of OGFr, Bax, BCL-2, caspase-3, PARP. The anti-tumor activity of MENK in gastic carcinoma was also investigated with animal experiments. Results The results indicate that MENK could significantly inhibit the growth of human GC cells SGC7901 and HGC27 in a concentration- and time-dependent manner, decrease the number of cell colonies, and arrest cell cycle in the G0/G1 phase by causing a decrease in Ki67, cyclin D1, and c-myc mRNA. Furthermore, MENK could induce tumor cell apoptosis associated with the upregulation of Bax, a corresponding downregulation of BCL-2 and survivin, and activation of caspase-3 and PARP. Moreover, MENK upregulated the expression of opioid receptors (OGFr) in SGC7901 and HGC27 cells. The interaction between MENK and OGFr in SGC7901 and HGC27 cells appears to be essential for the antitumor activity of MENK. Conclusion We conclude that MENK may be a potential drug for the treatment of GC.
Collapse
Affiliation(s)
- Xiaonan Wang
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, China,
| | - Jing Tian
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, China,
| | - Xue Jiao
- Department of Translational Medicine, No. 4 Teaching Hospital, China Medical University, Shenyang, China
| | - Jin Geng
- Department of Ophthalmology, China Medical University, Shenyang, China
| | - Reizhe Wang
- Department of Gynecology, No. 1 Teaching Hospital, China Medical University, Shenyang, China
| | - Ning Liu
- Department of Gynecologic Oncology, Shengjing Hospital
| | - Xinghua Gao
- Department of Dermatology, No. 1 Teaching Hospital, China Medical University, Shenyang, China
| | | | - Yuan Gao
- Faculty of Information and Engineering, Northeastern University, Shenyang, China
| | - Fengping Shan
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, China,
| |
Collapse
|
12
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
13
|
Lu WC, Xie H, Tie XX, Wang R, Wu AH, Shan FP. NFAT-1 hyper-activation by methionine enkephalin (MENK) significantly induces cell apoptosis of rats C6 glioma in vivo and in vitro. Int Immunopharmacol 2018; 56:1-8. [DOI: 10.1016/j.intimp.2018.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 12/16/2017] [Accepted: 01/03/2018] [Indexed: 01/02/2023]
|
14
|
Tian J, Jiao X, Wang X, Geng J, Wang R, Liu N, Gao X, Griffin N, Shan F. Novel effect of methionine enkephalin against influenza A virus infection through inhibiting TLR7-MyD88-TRAF6-NF-κB p65 signaling pathway. Int Immunopharmacol 2018; 55:38-48. [DOI: 10.1016/j.intimp.2017.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023]
|
15
|
Wang DM, Jiao X, Plotnikoff NP, Griffin N, Qi RQ, Gao XH, Shan FP. Killing effect of methionine enkephalin on melanoma in vivo and in vitro. Oncol Rep 2017; 38:2132-2140. [PMID: 28849104 PMCID: PMC5652957 DOI: 10.3892/or.2017.5918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/14/2017] [Indexed: 01/06/2023] Open
Abstract
Melanoma is a common cutaneous malignancy, that is also found in specific mucosal sites, and is associated with a poor prognosis. The aim of the present study was to investigate the cytotoxicity of methionine enkephalin (MENK) for B16 melanoma cells in vivo and in vitro. The results of the present study allowed our conclusion that MENK regulates the proliferation of B16 cells, causing cell cycle arrest in the G0/G1 phase and a decrease in the percentage of cells in the S and G2/M phases. Reverse transcription-quantitative polymerase chain reaction demonstrated that MENK increased opioid receptor expression in the B16 cells. Furthermore, the tumor volume and weight in the MENK-treated group were lower than those in the control group (NS) and MENK and naltrexone (NTX)-treated groups. MENK exerted both significant antitumor activity on the growth of B16 cells and a longer survival time in mice. The mice treated with MENK exhibited an increased ratio of CD4+ to CD8+ T cells as tested by flow cytometry (FCM), resulting in a ratio of 2.03 in the control group, 3.69 in the MENK-treated group, and 2.65 in the MENK and NTX group. Furthermore, a significant increase in plasma levels of IL-2, IFN-γ and TNF-α was revealed as assessed by ELISA. In conclusion, the results of the present study indicate that MENK has a cytotoxic effect on B16 melanoma cells in vitro and in vivo, and suggest a potential mechanism for these bioactivities. Therefore, we posit that MENK should be investigated, not only as a primary therapy for melanoma, but also as an adjuvant therapy in combination with chemotherapies.
Collapse
Affiliation(s)
- Dong-Mei Wang
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Xue Jiao
- Center for Translational Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | | | | | - Rui-Qun Qi
- Department of Dermatology, No. 1 Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xing-Hua Gao
- Department of Dermatology, No. 1 Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Feng-Ping Shan
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|