1
|
Cheng Y, Zhang H, Guan B, Zhang Y, Qin C, Li D, Zhang J, Zhang B, Lin Y, Li F. CircCDR1as orchestrates the advancement of asthma triggered by PM 2.5 through the modulation of ferroptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175328. [PMID: 39117210 DOI: 10.1016/j.scitotenv.2024.175328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Exposure to fine particulate matter (PM2.5) in the ambient environment augments susceptibility to respiratory ailments. Circular RNAs, a distinctive subclass of endogenous non-coding RNAs, have been acknowledged as pivotal regulators of pathological conditions. Ferroptosis, an innovative iron-dependent form of cellular demise, has emerged as a consequential participant in numerous maladies. Despite the established association between PM2.5 exposure and the exacerbation of asthma, scant investigations have probed into the implication of circRNAs and ferroptosis in PM2.5-induced asthma. Consequently, this inquiry sought to scrutinize the potential involvement of circCDR1as and ferroptosis in PM2.5-induced asthma. Through the formulation of a PM2.5 exposure model in asthmatic mice and an in vitro cellular model, it was discerned that PM2.5 induced ferroptosis, thereby intensifying asthma progression. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed an upregulation of circCDR1as in the PM2.5-stimulated asthma cell model. Molecular biology assays demonstrated that diminished circCDR1as expression hindered the onset of ferroptosis in response to PM2.5 exposure. Notably, Ferrostatin-1 (Fer-1), an inhibitor of ferroptosis, manifested the ability to impede the advancement of asthma. Mechanistically, RNA pull-down and molecular biology experiments substantiated that circCDR1as selectively bound to insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2), thereby modulating the occurrence of ferroptosis. CircCDR1as emerged as a potential orchestrator of asthma progression by regulating ferroptosis under PM2.5 exposure. Additionally, PM2.5 exposure elicited activation of the Wnt/β-catenin signaling pathway, subsequently influencing the expression of C-myc and Cyclin D1, ultimately exacerbating asthma development. In summation, the interaction between circCDR1as and IGF2BP2 in regulating ferroptosis was identified as a critical facet in the progression of asthma under PM2.5 exposure. This investigation underscores the pivotal roles of circCDR1as and ferroptosis in PM2.5-induced asthma, offering a novel theoretical foundation for the therapeutic and preventive approaches to asthma.
Collapse
Affiliation(s)
- Yu Cheng
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Haimin Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Boyu Guan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yong Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Chuhao Qin
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Dongsheng Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Jiahui Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Boyu Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Yingwei Lin
- Department of Laboratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Fasheng Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
2
|
Li F, Li X, Jiang M, Wang C, Liu G, Yang Z, Wu Y. Research progress into the application of Mycobacterium phlei in veterinary medicine. Vet Med Sci 2023; 9:2617-2624. [PMID: 37723902 PMCID: PMC10650220 DOI: 10.1002/vms3.1262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/21/2023] [Accepted: 09/03/2023] [Indexed: 09/20/2023] Open
Abstract
Mycobacterium phlei is a gram-positive acid-fast mycobacterium from the family Mycobacteriaceae. It is a valuable resource for both natural drugs and microecological preparations. It has been widely used in the field of human medicine; however, in the field of animal husbandry and veterinary medicine, the research and application of M. phlei is still in the preliminary exploration stage. This study aims to summarize the research progress of M. phlei in the field of veterinary medicine and provide a valuable reference for future research. Key words, such as 'M. phlei', 'veterinary field', 'immune balancer', 'genome' and other relevant words to this study, were used to search through PubMed, Web of Science, SciELO, Science Direct and Google Scholar databases. The results showed that the culture conditions of M. phlei were relatively simple, but its bacterial composition and genome sequence were relatively complex, and various components in the cell wall may have immunoregulatory effects. Therefore, the inactivated preparation made from M. phlei can have various applications in the veterinary field, such as growth regulation, immune regulation, antitumour, anti-parasite and asthma treatment. The literature review indicates that M. phlei preparation is an efficient and convenient immune system balance agent. Despite the challenges associated with the use of M. phlei preparations, it has a strong potential for application in veterinary medicine.
Collapse
Affiliation(s)
- Fan Li
- College of Veterinary MedicineHunan Agricultural UniversityChangshaHunanChina
| | - Xiang Li
- Hunan Canzoho Biological Technology Co., Ltd.LiuyangHunanChina
| | - Meng‐Lin Jiang
- College of Veterinary MedicineHunan Agricultural UniversityChangshaHunanChina
| | - Chun‐Hua Wang
- College of Veterinary MedicineHunan Agricultural UniversityChangshaHunanChina
| | - Gao‐Feng Liu
- Hunan Canzoho Biological Technology Co., Ltd.LiuyangHunanChina
| | - Zi Yang
- Academician WorkstationChangsha Medical UniversityChangshaHunanChina
| | - Yong Wu
- College of Veterinary MedicineHunan Agricultural UniversityChangshaHunanChina
| |
Collapse
|
3
|
Zarobkiewicz MK, Wawryk-Gawda E, Kowalska W, Janiszewska M, Bojarska-Junak A. γδ T Lymphocytes in Asthma: a Complicated Picture. Arch Immunol Ther Exp (Warsz) 2021; 69:4. [PMID: 33661375 PMCID: PMC7932949 DOI: 10.1007/s00005-021-00608-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 02/17/2021] [Indexed: 02/08/2023]
Abstract
A minor subset (approximately 5%) of peripheral T cells has their TCR build up from γ and δ chains instead of α and β-those are the γδ T lymphocytes. They can be functionally divided into subsets, e.g., Th1-, Th2-, Th9-, Th17-, Tfh-, and Treg-like γδ T cells. They share some specifics of both innate and adaptive immunity, and are capable of rapid response to a range of stimuli, including some viral and bacterial infections. Atopic diseases, including asthma, are one of major health-related problems of modern western societies. Asthma is one of the most common airway diseases, affecting people of all ages and having potential life-threatening consequences. In this paper, we review the current knowledge about the involvement of γδ T cells in the pathogenesis of asthma and its exacerbations. We summarize both the studies performed on human subjects as well as on the murine model of asthma. γδ T cells seem to be involved in the pathogenesis of asthma, different subsets probably perform opposite functions, e.g., symptom-exacerbating Vγ1 and symptom-suppressing Vγ4 in mice model of asthma.
Collapse
Affiliation(s)
- Michał K Zarobkiewicz
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland.
| | - Ewelina Wawryk-Gawda
- Department of Paediatric Pulmonology and Rheumatology, Medical University of Lublin, Lublin, Poland
| | - Wioleta Kowalska
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland
| | - Mariola Janiszewska
- Department of Medical Informatics and Statistics With E-Learning Laboratory, Medical University of Lublin, Lublin, Poland
| | - Agnieszka Bojarska-Junak
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland
| |
Collapse
|
4
|
Yao YE, Zhang JH, Chen XJ, Huang JL, Sun QX, Liu WW, Zeng H, Li CQ. Regulation of γδT17 cells by Mycobacterium vaccae through interference with Notch/Jagged1 signaling pathway. ACTA ACUST UNITED AC 2020; 53:e9551. [PMID: 33053115 PMCID: PMC7552905 DOI: 10.1590/1414-431x20209551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/23/2020] [Indexed: 11/22/2022]
Abstract
The objective of this study was to investigate the effect of Mycobacterium vaccae on Jagged 1 and gamma delta T17 (γδT17) cells in asthmatic mice. An asthma mouse model was established through immunization with ovalbumin (OVA). Gamma-secretase inhibitor (DAPT) was used to block the Notch signaling pathway. M. vaccae was used to treat asthma, and related indicators were measured. Blocking Notch signaling inhibited the production of γδT17 cells and secretion of cytokine interleukin (IL)-17, which was accompanied by a decrease in Jagged1 mRNA and protein expression in the treated asthma group compared with the untreated asthma group. Similarly, treatment with M. vaccae inhibited Jagged1 expression and γδT17 cell production, which was associated with decreased airway inflammation and reactivity. The Notch signaling pathway may play a role in the pathogenesis of asthma through the induction of Jagged1 receptor. On the other hand, the inhibitory effect of M. vaccae on Jagged1 receptor in γδT17 cells could be used for the prevention and treatment of asthma.
Collapse
Affiliation(s)
- Yi En Yao
- Department of Respiratory Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Hong Zhang
- Department of Internal Medicine, Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiao Ju Chen
- Department of Critical Care, First People's Hospital of Yulin City, Nanning, Guangxi, China
| | - Jian Lin Huang
- Department of Respiratory Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qi Xiang Sun
- Department of Respiratory Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wei Wei Liu
- Department of Emergency Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Huan Zeng
- The Second Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Chao Qian Li
- Department of Respiratory Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
5
|
Mustafa AS. Vaccine Potential of Mycobacterial Antigens against Asthma. Med Princ Pract 2020; 29:404-411. [PMID: 32422630 PMCID: PMC7511680 DOI: 10.1159/000508719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/17/2020] [Indexed: 12/16/2022] Open
Abstract
Asthma is a cause of substantial burden of disease in the world, including both premature deaths and reduced quality of life. A leading hypothesis to explain the worldwide increase of asthma is the "hygiene hypothesis," which suggests that the increase in the prevalence of asthma is due to the reduction in exposure to infections/microbial antigens. In allergic asthma, the most common type of asthma, antigen-specific T helper (Th)2 and Th17 cells and their cytokines are primary mediators of the pathological consequences. In contrast, Th1 and T regulatory (Treg) cells and their cytokines play a protective role. This article aims to review the information on the effect of mycobacteria and their antigens in modulating Th2/Th17 responses towards Th1/Treg responses and protection against asthma in humans and animal models.
Collapse
Affiliation(s)
- Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait,
| |
Collapse
|
6
|
Yang X, Zhang JH, Deng WS, Li CQ. Imbalance of γδT17/γδTreg cells in the pathogenesis of allergic asthma induced by ovalbumin. ACTA ACUST UNITED AC 2018; 51:e7127. [PMID: 29995107 PMCID: PMC6050949 DOI: 10.1590/1414-431x20187127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
Abstract
We aimed to explore the imbalance between the T helper 17 γδT cells (γδT17) and the regulatory γδT cells (γδTreg) in asthmatic mice. Male Balb/c mice were randomly divided into the normal control group and the asthmatic model group. The asthmatic model group mice were intraperitoneally injected with the mixture of ovalbumin (OVA)/Al(OH)3 and then activated by exposure of the animals to OVA atomization. Airway hyperresponsiveness (AHR) was determined by a non-invasive lung function machine. Hematoxylin and eosin and Alcian blue-periodic acid Schiff staining were done for histopathological analysis. Interleukin (IL)-17 and IL-35 levels in bronchoalveolar lavage fluid were detected by ELISA. The percentage of IL-17+ γδT cells and Foxp3+ γδT cells in spleen cells suspension were detected and the transcription levels of RORγt and Foxp3 in the lung tissue were determined. Compared with the normal control, the severity of airway inflammation and AHR were higher in the asthmatic mice. Furthermore, mice in the asthmatic group displayed significant increases of IL-17+ γδT cells, expression of IL-17A, and RORγt, whereas control mice displayed marked decreases of Foxp3+ γδT cells, expression of IL-35, and transcription factor Foxp3. In addition, the mRNA expression of RORγt was positively correlated with the percentage of IL-17+γδT cells, and the mRNA level of Foxp3 was positively correlated with the percentage of Foxp3+ γδT cells. The imbalance of γδT17/γδTreg in the asthmatic mice may contribute to the pathogenesis of OVA-induced asthma.
Collapse
Affiliation(s)
- Xia Yang
- Department of Emergency, the First Affiliated Hospital of Guangxi Medical University, The Guangxi Talent Highland for Emergency and Rescue Medicine, Nanning, Guangxi, China
| | - Jing-Hong Zhang
- Department of Emergency, the First Affiliated Hospital of Guangxi Medical University, The Guangxi Talent Highland for Emergency and Rescue Medicine, Nanning, Guangxi, China
| | - Wang-Sheng Deng
- Department of Emergency, the First Affiliated Hospital of Guangxi Medical University, The Guangxi Talent Highland for Emergency and Rescue Medicine, Nanning, Guangxi, China
| | - Chao-Qian Li
- Department of Emergency, the First Affiliated Hospital of Guangxi Medical University, The Guangxi Talent Highland for Emergency and Rescue Medicine, Nanning, Guangxi, China.,Department of Respiratory Medicine, Guangxi Vocational and Technical College of Health, Nanning, Guangxi, China
| |
Collapse
|