1
|
Chen X, Yuan L, Xu H, Hu P, Yang Y, Guo Y, Guo Z, Deng H. Novel GLI3 Mutations in Chinese Patients with Non-syndromic Post-axial Polydactyly. Curr Mol Med 2020; 19:228-235. [PMID: 30848202 DOI: 10.2174/1566524019666190308110122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Polydactyly, characterized by supernumerary digits in the upper or lower extremities, is the most common congenital digital abnormalities. It derives from the defective patterning of anteroposterior axis of the developing limb, with various etiology and clinical heterogeneity. The patients with post-axial polydactyly type A (PAPA) have the typical symptom of a well-formed supernumerary digit outside the fifth digit. OBJECTIVE The aim of present study was to identify the causative mutations of two unrelated Han Chinese patients with non-syndromic PAPA. METHODS Two unrelated Han Chinese patients and 100 ethnicity-matched, unrelated normal controls were recruited for this study. BGISEQ-500 exome sequencing was performed in the two patients, followed by validation in the patients and 100 controls by using Sanger sequencing. RESULTS Two mutations in the GLI family zinc finger 3 gene (GLI3), including a frameshift mutation c.3437_3453delTCGAGCAGCCCTGCCCC (p.L1146RfsX95) and a nonsense mutation c.3997C>T (p.Q1333X), were identified in two patients but were absent in the 100 healthy controls. CONCLUSION The two GLI3 mutations, p.L1146RfsX95 and p.Q1333X, may account for non-syndromic PAPA in the two patients, respectively. The findings of this study may expand the mutational spectrum of GLI3-PAPA and provide novel insights into the genetic basis of polydactyly.
Collapse
Affiliation(s)
- X Chen
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - L Yuan
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - H Xu
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - P Hu
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Y Yang
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Y Guo
- Department of Medical Information, Information Security and Big Data Research Institute, Central South University, Changsha, China
| | - Z Guo
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - H Deng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Identification of a CNGB1 Frameshift Mutation in a Han Chinese Family with Retinitis Pigmentosa. Optom Vis Sci 2019; 95:1155-1161. [PMID: 30451805 DOI: 10.1097/opx.0000000000001305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
SIGNIFICANCE Retinitis pigmentosa (RP) is a severe hereditary retinal disorder characterized by progressive degeneration of rod and cone photoreceptors. This study identified a novel frameshift mutation, c.385delC, p.(L129WfsTer148), in the cyclic nucleotide-gated channel beta 1 (CNGB1) gene of a consanguineous Han Chinese family with autosomal recessive RP (arRP). This expands the spectrum of CNGB1 gene variants in RP cases and possibly refines future genetic counseling. PURPOSE The present study sought to identify potential pathogenetic gene mutations in a five-generation consanguineous Han Chinese family with RP. METHODS Two members of a five-generation consanguineous Han Chinese pedigree with arRP and 100 normal individuals were enrolled in this study. Exome sequencing was performed on the 70-year-old male proband from a consanguineous family to screen potential pathogenic mutations according to the American College of Medical Genetics and Genomics for the interpretation of sequence variants. Sanger sequencing was performed on the proband, the proband's unaffected son, and 100 normal individuals to verify the disease-causing mutation. RESULTS A novel frameshift mutation, c.385delC, p.(L129WfsTer148), with homozygous status in the CNGB1 gene was identified in the proband of the family with arRP, and the mutation with heterozygous status was carried by the asymptomatic son. CONCLUSIONS The c.385delC (p.(L129WfsTer148)) mutation in the CNGB1 gene screened by exome sequencing is probably responsible for the RP phenotype in this family. The result expands the spectrum of CNGB1 gene variants in RP cases and possibly refines future genetic counseling.
Collapse
|
3
|
Wu S, Deng S, Song Z, Xu H, Yang Z, Liu X, Qi L, Deng H, Yuan L. A Disease-Causing FRMD7 Variant in a Chinese Family with Infantile Nystagmus. J Mol Neurosci 2019; 67:418-423. [PMID: 30618027 DOI: 10.1007/s12031-018-1245-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/14/2018] [Indexed: 11/29/2022]
Abstract
In this report, we described a large Han-Chinese family which presents with various phenotypes from unaffected to manifested nystagmus in females. Infantile nystagmus (IN) is characterized by bilateral, involuntary, and periodic eyeball oscillation, occurring at birth or within the first 6 months. The most common inheritance pattern of IN is an X-linked form with incomplete penetrance among females, and the FERM domain containing 7 gene (FRMD7) is a main disease-causing gene. A combination of exome sequencing and Sanger sequencing, as well as detailed clinical examinations were performed on the Chinese IN family. An FRMD7 c.47T>C (p.Phe16Ser) variant was proposed as the disease-causing variant. Incomplete penetrance was found in females with the FRMD7 c.47T>C variant, and hemizygous male affected subjects presented more severe manifestations compared to heterozygous female affected subjects. These findings could enhance genetic counseling and antenatal diagnosis of IN.
Collapse
Affiliation(s)
- Shan Wu
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Sheng Deng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Song
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongbo Xu
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Zhijian Yang
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Xin Liu
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Li Qi
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China
| | - Hao Deng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.,Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Lamei Yuan
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
4
|
Wu Y, Yuan L, Guo Y, Lu A, Zheng W, Xu H, Yang Y, Hu P, Gu S, Wang B, Deng H. Identification of a GNE homozygous mutation in a Han-Chinese family with GNE myopathy. J Cell Mol Med 2018; 22:5533-5538. [PMID: 30160005 PMCID: PMC6201217 DOI: 10.1111/jcmm.13827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
GNE myopathy is a rare, recessively inherited, early adult‐onset myopathy, characterized by distal and proximal muscle degeneration which often spares the quadriceps. It is caused by mutations in the UDP‐N‐acetylglucosamine 2‐epimerase/N‐acetylmannosamine kinase gene (GNE). This study aimed to identify the disease‐causing mutation in a three‐generation Han‐Chinese family with members who have been diagnosed with myopathy. A homozygous missense mutation, c.1627G>A (p.V543M) in the GNE gene co‐segregates with the myopathy present in this family. A GNE myopathy diagnosis is evidenced by characteristic clinical manifestations, rimmed vacuoles in muscle biopsies and the presence of biallelic GNE mutations. This finding broadens the GNE gene mutation spectrum and extends the GNE myopathy phenotype spectrum.
Collapse
Affiliation(s)
- Yuan Wu
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Laboratory, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lamei Yuan
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yi Guo
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Medical Information, Information Security and Big Data Research Institute, Central South University, Changsha, China
| | - Anjie Lu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wen Zheng
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongbo Xu
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Yang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Pengzhi Hu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shaojuan Gu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Bingqi Wang
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Xiao H, Yuan L, Xu H, Yang Z, Huang F, Song Z, Yang Y, Zeng C, Deng H. Novel and Recurring Disease-Causing NF1 Variants in Two Chinese Families with Neurofibromatosis Type 1. J Mol Neurosci 2018; 65:557-563. [DOI: 10.1007/s12031-018-1128-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/18/2018] [Indexed: 11/28/2022]
|