1
|
Liu Z, Xu J, Que T, Que S, Valenti L, Zheng S. Molecular Mechanisms of Ischemia/Reperfusion Injury and Graft Dysfunction in Liver Transplantation: Insights from Multi-Omics Studies in Rodent Animal Models. Int J Biol Sci 2025; 21:2135-2154. [PMID: 40083684 PMCID: PMC11900806 DOI: 10.7150/ijbs.109449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/25/2025] [Indexed: 03/16/2025] Open
Abstract
Rodent ischemia-reperfusion injury (IRI) and liver transplantation (LT) models play crucial roles in mimicking graft injury and immune rejection, developing therapeutic approaches, and evaluating the efficacy of treatments. The application of integrated multi-omics data and advanced omics techniques like single-cell RNA sequencing in rodent models has expanded researchers' perspectives on pathophysiological processes in LT settings. This review summarizes key molecules and pathways associated with reperfusion injury and prognosis in LT models, highlighting the potential of omics data in understanding and improving transplant outcomes. In addition, we highlight the current challenges and future approaches for the application of omics data in rodent LT models. Cross-species validation with human data will improve therapeutic potential. Finally, further applications combining advanced single-cell, spatial omics technologies and machine learning algorithms will help to identify the key regulatory networks in specific cell populations underlying poor outcomes after LT.
Collapse
Affiliation(s)
- Zhengtao Liu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Shulan Hospital (Hangzhou), Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Xu
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ting Que
- Birth Defects Prevention and Control Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | | | - Luca Valenti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Precision Medicine, Biological Resource Center Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Shusen Zheng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Shulan Hospital (Hangzhou), Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Zamorano M, Castillo RL, Beltran JF, Herrera L, Farias JA, Antileo C, Aguilar-Gallardo C, Pessoa A, Calle Y, Farias JG. Tackling Ischemic Reperfusion Injury With the Aid of Stem Cells and Tissue Engineering. Front Physiol 2021; 12:705256. [PMID: 34603075 PMCID: PMC8484708 DOI: 10.3389/fphys.2021.705256] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/11/2021] [Indexed: 01/14/2023] Open
Abstract
Ischemia is a severe condition in which blood supply, including oxygen (O), to organs and tissues is interrupted and reduced. This is usually due to a clog or blockage in the arteries that feed the affected organ. Reinstatement of blood flow is essential to salvage ischemic tissues, restoring O, and nutrient supply. However, reperfusion itself may lead to major adverse consequences. Ischemia-reperfusion injury is often prompted by the local and systemic inflammatory reaction, as well as oxidative stress, and contributes to organ and tissue damage. In addition, the duration and consecutive ischemia-reperfusion cycles are related to the severity of the damage and could lead to chronic wounds. Clinical pathophysiological conditions associated with reperfusion events, including stroke, myocardial infarction, wounds, lung, renal, liver, and intestinal damage or failure, are concomitant in due process with a disability, morbidity, and mortality. Consequently, preventive or palliative therapies for this injury are in demand. Tissue engineering offers a promising toolset to tackle ischemia-reperfusion injuries. It devises tissue-mimetics by using the following: (1) the unique therapeutic features of stem cells, i.e., self-renewal, differentiability, anti-inflammatory, and immunosuppressants effects; (2) growth factors to drive cell growth, and development; (3) functional biomaterials, to provide defined microarchitecture for cell-cell interactions; (4) bioprocess design tools to emulate the macroscopic environment that interacts with tissues. This strategy allows the production of cell therapeutics capable of addressing ischemia-reperfusion injury (IRI). In addition, it allows the development of physiological-tissue-mimetics to study this condition or to assess the effect of drugs. Thus, it provides a sound platform for a better understanding of the reperfusion condition. This review article presents a synopsis and discusses tissue engineering applications available to treat various types of ischemia-reperfusions, ultimately aiming to highlight possible therapies and to bring closer the gap between preclinical and clinical settings.
Collapse
Affiliation(s)
- Mauricio Zamorano
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | | | - Jorge F Beltran
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Lisandra Herrera
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Joaquín A Farias
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibíñtez, Santiago, Chile
| | - Christian Antileo
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Cristobal Aguilar-Gallardo
- Hematological Transplant and Cell Therapy Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Yolanda Calle
- Department of Life Sciences, Whitelands College, University of Roehampton, London, United Kingdom
| | - Jorge G Farias
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
4
|
Leng J, Liu W, Li L, Wei FY, Tian M, Liu HM, Guo W. MicroRNA-429/Cxcl1 Axis Protective Against Oxygen Glucose Deprivation/Reoxygenation-Induced Injury in Brain Microvascular Endothelial Cells. Dose Response 2020; 18:1559325820913785. [PMID: 32284700 PMCID: PMC7139192 DOI: 10.1177/1559325820913785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/02/2020] [Accepted: 02/18/2020] [Indexed: 01/12/2023] Open
Abstract
Objective: The objective of the present work was to study the role of Cxcl1 in cerebral
ischemia–reperfusion (I/R) injury and to in-depth explore its pathogenesis. Methods: The expression of Cxcl1 based on the public data was analyzed. Then, we constructed an
oxygen glucose deprivation/reoxygenation (OGD/R) model in vitro using mice brain
microvascular endothelial cells (BMECs) to simulate cerebral I/R in vivo. Results: The results of quantitative real-time polymerase chain reaction assay uncovered that
Cxcl1 showed higher expression while miR-429 showed lower expression in BMECs damaged by
OGD/R, whereas overexpression of Cxcl1 or inhibition of miR-429 expression can
strengthen this effect. Hereafter, through dual luciferase reporter assay, we verified
that miR-429 directly targets Cxcl1 and negatively regulates Cxcl1 expression.
Furthermore, the results also revealed that overexpression of Cxcl1 can reverse the
miR-429-mediated effects. Conclusion: We concluded that miR-429 exerts protective effects against OGD/R-induce injury in
vitro through modulation of Cxcl1 and nuclear factor kinase B pathway, hoping provide a
new view on the pathogenesis of cerebral I/R injury and a feasible potential therapeutic
target.
Collapse
Affiliation(s)
- Jun Leng
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China.,Co-first authors and contributed equally to this work
| | - Wei Liu
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China.,Co-first authors and contributed equally to this work
| | - Li Li
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China
| | - Fang Yue Wei
- Shandong University of Traditional Chinese Medicine Rehabilitation College Rehabilitation Medicine and Physiotherapy, Jinan, Shandong Province, People's Republic of China
| | - Meng Tian
- Competitive sports section 1 of Sports Science Research Center of Shandong Province, Jinan, Shandong Province, People's Republic of China
| | - Hui Min Liu
- Shandong University of Traditional Chinese Medicine Rehabilitation College Rehabilitation Medicine and Physiotherapy, Jinan, Shandong Province, People's Republic of China
| | - Wen Guo
- Shandong University of Traditional Chinese Medicine Rehabilitation College Rehabilitation Medicine and Physiotherapy, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
5
|
Chi X, Jiang Y, Chen Y, Yang F, Cai Q, Pan F, Lv L, Zhang X. Suppression of microRNA‑27a protects against liver ischemia/reperfusion injury by targeting PPARγ and inhibiting endoplasmic reticulum stress. Mol Med Rep 2019; 20:4003-4012. [PMID: 31485635 DOI: 10.3892/mmr.2019.10645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/13/2019] [Indexed: 11/06/2022] Open
Abstract
Liver ischemia‑reperfusion (I/R) injury is an important clinical issue related to liver transplantation. Recent studies suggest that microRNAs are implicated in various biological and pathological processes, including liver I/R injury. This study aimed to investigate the role and potential mechanism of miR‑27a during liver I/R injury. A liver I/R model was induced via 60 min of ischemia and reperfusion for 6 h in rats. Cells were transfected with miR‑27a mimics or the miR‑27a inhibitor to examine the effect of miR‑27a on liver I/R. Apoptotic cells were detected by flow cytometry and TUNEL staining. The expression of miR‑27a was measured by real‑time PCR. The expression of peroxisome proliferator‑activated receptor γ (PPARγ); gastrin‑releasing peptide 78 (GRP78) and C/EBP homologous protein (CHOP) were detected by western blot analysis. The results showed that miR‑27a was significantly upregulated during I/R injury in vivo and in vitro. In addition, miR‑27a inhibitors attenuated hypoxia/reoxygenation (H/R)‑induced oxidative stress, endoplasmic reticulum stress (ERS) and apoptosis in AML12 cells. By contrast, miR‑27a mimics promoted hypoxia/reoxygenation‑induced ERS, and apoptosis. Furthermore, PPARγ was identified as a target gene of miR‑27a using bioinformatic analysis and a dual‑luciferase reporter assay. Knockdown of PPARγ significantly abrogated the inhibitory effect of miR‑27a inhibitors on the ERS pathway. Moreover, the miR‑27a antagomir attenuated liver I/R injury in rats, a finding manifested by reduced ALT/AST, hepatocyte apoptosis, oxidative stress and inhibition of the ERS pathway. Taken together, these findings demonstrate that suppression of miR‑27a protects against liver I/R injury by targeting PPARγ and by inhibiting the ERS pathway.
Collapse
Affiliation(s)
- Xiaobin Chi
- Department of Hepatobiliary Surgery, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yi Jiang
- Department of Hepatobiliary Surgery, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yongbiao Chen
- Department of Hepatobiliary Surgery, 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian 350025, P.R. China
| | - Fang Yang
- Department of Hepatobiliary Surgery, 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian 350025, P.R. China
| | - Qiucheng Cai
- Department of Hepatobiliary Surgery, 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian 350025, P.R. China
| | - Fan Pan
- Department of Hepatobiliary Surgery, 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian 350025, P.R. China
| | - Lizhi Lv
- Department of Hepatobiliary Surgery, 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian 350025, P.R. China
| | - Xiaojin Zhang
- Department of Hepatobiliary Surgery, 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
6
|
Huang S, Ju W, Zhu Z, Han M, Sun C, Tang Y, Hou Y, Zhang Z, Yang J, Zhang Y, Wang L, Lin F, Chen H, Xie R, Zhu C, Wang D, Wu L, Zhao Q, Chen M, Zhou Q, Guo Z, He X. Comprehensive and combined omics analysis reveals factors of ischemia-reperfusion injury in liver transplantation. Epigenomics 2019; 11:527-542. [PMID: 30700158 DOI: 10.2217/epi-2018-0189] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM To explore molecular mechanisms underlying liver ischemia-reperfusion injury (IRI). MATERIALS & METHODS Four Gene Expression Omnibus datasets comprising liver transplantation data were collected for a comprehensive analysis. A proteomic analysis was performed and used for correlations analysis with transcriptomic. RESULTS & CONCLUSION Ten differentially expressed genes were co-upregulated in four Gene Expression Omnibus datasets, including ATF3, CCL4, DNAJB1, DUSP5, JUND, KLF6, NFKBIA, PLAUR, PPP1R15A and TNFAIP3. The combined analysis demonstrated ten coregulated genes/proteins, including HBB, HBG2, CA1, SLC4A1, PLIN2, JUNB, HBA1, MMP9, SLC2A1 and PADI4. The coregulated differentially expressed genes and coregulated genes/proteins formed a tight interaction network and could serve as the core factors underlying IRI. Comprehensive and combined omics analyses revealed key factors underlying liver IRI, and thus having potential clinical significance.
Collapse
Affiliation(s)
- Shanzhou Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Weiqiang Ju
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Zebin Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Ming Han
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Chengjun Sun
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Yunhua Tang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Yuchen Hou
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Zhiheng Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Jie Yang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Yixi Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Linhe Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Fanxiong Lin
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Haitian Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Rongxing Xie
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Caihui Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Dongping Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Linwei Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Maogen Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Qi Zhou
- Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-sen University, Huizhou, Guangdong 516081, PR China.,Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Zhiyong Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.,Guangdong Provincial Key Laboratory of Organ Donation & Transplant Immunology, Guangzhou 510080, PR China.,Guangdong Provincial International Cooperation Base of Science & Technology (Organ Transplantation), Guangzhou 510080, PR China
| |
Collapse
|