1
|
吴 松, 李 学, 关 发, 冯 建, 贾 静, 李 京, 刘 力. [Enhanced endoplasmic reticulum RyR1 receptor phosphorylation leads to diaphragmatic dysfunction in septic rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:631-636. [PMID: 37202200 PMCID: PMC10202788 DOI: 10.12122/j.issn.1673-4254.2023.04.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Indexed: 05/20/2023]
Abstract
OBJECTIVE To explore the role of endoplasmic reticulum ryanodine receptor 1 (RyR1) expression and phosphorylation in sepsis- induced diaphragm dysfunction. METHODS Thirty SPF male SD rats were randomized equally into 5 groups, including a sham-operated group, 3 sepsis model groups observed at 6, 12, or 24 h following cecal ligation and perforation (CLP; CLP-6h, CLP-12h, and CLP-24h groups, respectively), and a CLP-24h group with a single intraperitoneal injection of KN- 93 immediately after the operation (CLP-24h+KN-93 group). At the indicated time points, diaphragm samples were collected for measurement of compound muscle action potential (CMAP), fatigue index of the isolated diaphragm and fitted frequencycontraction curves. The protein expression levels of CaMK Ⅱ, RyR1 and P-RyR1 in the diaphragm were detected using Western blotting. RESULTS In the rat models of sepsis, the amplitude of diaphragm CMAP decreased and its duration increased with time following CLP, and the changes were the most obvious at 24 h and significantly attenuated by KN-93 treatment (P < 0.05). The diaphragm fatigue index increased progressively following CLP (P < 0.05) irrespective of KN- 93 treatment (P>0.05). The frequency-contraction curve of the diaphragm muscle decreased progressively following CLP, and was significantly lower in CLP-24 h group than in CLP-24 h+KN-93 group (P < 0.05). Compared with that in the sham-operated group, RyR1 expression level in the diaphragm was significantly lowered at 24 h (P < 0.05) but not at 6 or 12 following CLP, irrespective of KN-93 treatment; The expression level of P-RyR1 increased gradually with time after CLP, and was significantly lowered by KN-93 treatment at 24 h following CLP (P < 0.05). The expression level of CaMKⅡ increased significantly at 24 h following CLP, and was obviously lowered by KN-93 treatment (P < 0.05). CONCLUSION Sepsis causes diaphragmatic dysfunction by enhancing CaMK Ⅱ expression and RyR1 receptor phosphorylation in the endoplasmic reticulum of the diaphragm.
Collapse
Affiliation(s)
- 松林 吴
- 西南医科大学附属医院麻醉科,四川 泸州 646000Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- 西南医科大学麻醉与重症医学中心实验室,四川 泸州 646000Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - 学欣 李
- 西南医科大学附属医院麻醉科,四川 泸州 646000Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- 西南医科大学麻醉与重症医学中心实验室,四川 泸州 646000Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - 发升 关
- 西南医科大学附属医院麻醉科,四川 泸州 646000Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- 西南医科大学麻醉与重症医学中心实验室,四川 泸州 646000Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - 建国 冯
- 西南医科大学附属医院麻醉科,四川 泸州 646000Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- 西南医科大学麻醉与重症医学中心实验室,四川 泸州 646000Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - 静 贾
- 西南医科大学附属医院麻醉科,四川 泸州 646000Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- 西南医科大学麻醉与重症医学中心实验室,四川 泸州 646000Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - 京 李
- 西南医科大学麻醉与重症医学中心实验室,四川 泸州 646000Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - 力 刘
- 西南医科大学附属医院麻醉科,四川 泸州 646000Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
2
|
Supinski GS, Netzel PF, Westgate PM, Schroder EA, Wang L, Callahan LA. Magnetic twitch assessment of diaphragm and quadriceps weakness in critically ill mechanically ventilated patients. Respir Physiol Neurobiol 2022; 295:103789. [PMID: 34560292 PMCID: PMC8604769 DOI: 10.1016/j.resp.2021.103789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 08/27/2021] [Accepted: 09/19/2021] [Indexed: 01/03/2023]
Abstract
Critically ill mechanically ventilated (MV) patients develop significant muscle weakness, which has major clinical consequences. There remains uncertainty, however, regarding the severity of leg weakness, the precise relationship between muscle strength and thickness, and the risk factors for weakness in MV patients. We therefore measured both diaphragm (PdiTw) and quadriceps (QuadTw) strength in MV patients using magnetic stimulation and compared strength to muscle thickness. Both PdiTw and QuadTw were profoundly reduced for MV patients, with PdiTw 19 % of normal and QuadTw 6% of normal values. There was a poor correlation between strength and thickness for both muscles, with thickness often remaining in the normal range when strength was severely reduced. Regression analysis revealed reductions in PdiTw correlated with presence of infection (p = 0.006) and age (p = 0.007). QuadTw best correlated with duration of MV (p = 0.036). Limb muscles are profoundly weak in critically ill patients, with a severity that mirrors the level of weakness observed in the diaphragm.
Collapse
Affiliation(s)
- Gerald S. Supinski
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, KY
| | - Paul F. Netzel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, KY
| | - Philip M. Westgate
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY
| | - Elizabeth A. Schroder
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, KY
| | - Lin Wang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, KY
| | - Leigh Ann Callahan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, KY
| |
Collapse
|
3
|
Supinski GS, Wang L, Schroder EA, Callahan LAP. MitoTEMPOL, a mitochondrial targeted antioxidant, prevents sepsis-induced diaphragm dysfunction. Am J Physiol Lung Cell Mol Physiol 2020; 319:L228-L238. [PMID: 32460519 DOI: 10.1152/ajplung.00473.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Clinical studies indicate that sepsis-induced diaphragm dysfunction is a major contributor to respiratory failure in mechanically ventilated patients. Currently there is no drug to treat this form of diaphragm weakness. Sepsis-induced muscle dysfunction is thought to be triggered by excessive mitochondrial free radical generation; we therefore hypothesized that therapies that target mitochondrial free radical production may prevent sepsis-induced diaphragm weakness. The present study determined whether MitoTEMPOL, a mitochondrially targeted free radical scavenger, could reduce sepsis-induced diaphragm dysfunction. Using an animal model of sepsis, we compared four groups of mice: 1) sham-operated controls, 2) animals with sepsis induced by cecal ligation puncture (CLP), 3) sham controls given MitoTEMPOL (10 mg·kg-1·day-1 ip), and 4) CLP animals given MitoTEMPOL. At 48 h after surgery, we measured diaphragm force generation, mitochondrial function, proteolytic enzyme activities, and myosin heavy chain (MHC) content. We also examined the effects of delayed administration of MitoTEMPOL (by 6 h) on CLP-induced diaphragm weakness. The effects of MitoTEMPOL on cytokine-mediated alterations on muscle cell superoxide generation and cell size in vitro were also assessed. Sepsis markedly reduced diaphragm force generation. Both immediate and delayed MitoTEMPOL administration prevented sepsis-induced diaphragm weakness. MitoTEMPOL reversed sepsis-mediated reductions in mitochondrial function, activation of proteolytic pathways, and decreases in MHC content. Cytokines increased muscle cell superoxide generation and decreased cell size, effects that were ablated by MitoTEMPOL. MitoTEMPOL and other compounds that target mitochondrial free radical generation may be useful therapies for sepsis-induced diaphragm weakness.
Collapse
Affiliation(s)
- Gerald S Supinski
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Lin Wang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Elizabeth A Schroder
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Leigh Ann P Callahan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
4
|
El Khayat El Sabbouri H, Gay-Quéheillard J, Joumaa WH, Delanaud S, Guibourdenche M, Darwiche W, Djekkoun N, Bach V, Ramadan W. Does the perigestational exposure to chlorpyrifos and/or high-fat diet affect respiratory parameters and diaphragmatic muscle contractility in young rats? Food Chem Toxicol 2020; 140:111322. [PMID: 32289335 DOI: 10.1016/j.fct.2020.111322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/17/2020] [Accepted: 04/03/2020] [Indexed: 02/08/2023]
Abstract
The perinatal period is characterized by developmental stages with high sensitivity to environmental factors. Among the risk factors, maternal High-Fat Diet (HFD) consumption and early-life pesticide exposure can induce metabolic disorders at adulthood. We established the effects of perigestational exposure to Chlorpyrifos (CPF) and/or HFD on respiratory parameters, sleep apnea and diaphragm contractility in adult rats. Four groups of female rats were exposed starting from 4 months before gestation till the end of lactation period to CPF (1 mg/kg/day vs. vehicle) with or without HFD. Sleep apnea and respiratory parameters were measured by whole-body plethysmography in male offspring at postnatal day 60. Then diaphragm strips were dissected for the measurement of contractility, acetylcholinesterase (AChE) activity, and gene expression. The perigestational exposure to CPF and/or HFD increased the sleep apnea index but decreased the respiratory frequency. The twitch tension and the fatigability index were also increased, associated with reduced AChE activity and elevated mRNA expression of AChE, ryanodine receptor, and myosin heavy chain isoforms. Therefore, the perigestational exposure to either CPF and/or HFD could program the risks for altered ventilatory parameters and diaphragm contractility in young adult offspring despite the lack of direct contact to CPF and/or HFD.
Collapse
Affiliation(s)
- Hiba El Khayat El Sabbouri
- PERITOX UMR-I-01 University of Picardie Jules Verne, 80025, Amiens, France; Laboratoire Rammal Hassan Rammal, équipe de Recherche PhyToxE, Faculté des Sciences (section V), Université Libanaise, Nabatieh, Lebanon
| | | | - Wissam H Joumaa
- Laboratoire Rammal Hassan Rammal, équipe de Recherche PhyToxE, Faculté des Sciences (section V), Université Libanaise, Nabatieh, Lebanon
| | - Stephane Delanaud
- PERITOX UMR-I-01 University of Picardie Jules Verne, 80025, Amiens, France
| | | | - Walaa Darwiche
- Hematim Laboratory, EA4666, University of Picardie Jules Verne, 80025, Amiens, France
| | - Narimane Djekkoun
- PERITOX UMR-I-01 University of Picardie Jules Verne, 80025, Amiens, France
| | - Véronique Bach
- PERITOX UMR-I-01 University of Picardie Jules Verne, 80025, Amiens, France
| | - Wiam Ramadan
- Laboratoire Rammal Hassan Rammal, équipe de Recherche PhyToxE, Faculté des Sciences (section V), Université Libanaise, Nabatieh, Lebanon; Lebanese Institute for Biomedical Research and Application (LIBRA), International University of Beirut (BIU) and Lebanese International University (LIU), Beirut, Lebanon
| |
Collapse
|