1
|
de Jonge H, Iamele L, Maggi M, Pessino G, Scotti C. Anti-Cancer Auto-Antibodies: Roles, Applications and Open Issues. Cancers (Basel) 2021; 13:813. [PMID: 33672007 PMCID: PMC7919283 DOI: 10.3390/cancers13040813] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Auto-antibodies are classically associated with autoimmune diseases, where they are an integral part of diagnostic panels. However, recent evidence is accumulating on the presence of auto-antibodies against single or selected panels of auto-antigens in many types of cancer. Auto-antibodies might initially represent an epiphenomenon derived from the inflammatory environment induced by the tumor. However, their effect on tumor evolution can be crucial, as is discussed in this paper. It has been demonstrated that some of these auto-antibodies can be used for early detection and cancer staging, as well as for monitoring of cancer regression during treatment and follow up. Interestingly, certain auto-antibodies were found to promote cancer progression and metastasis, while others contribute to the body's defense against it. Moreover, auto-antibodies are of a polyclonal nature, which means that often several antibodies are involved in the response to a single tumor antigen. Dissection of these antibody specificities is now possible, allowing their identification at the genetic, structural, and epitope levels. In this review, we report the evidence available on the presence of auto-antibodies in the main cancer types and discuss some of the open issues that still need to be addressed by the research community.
Collapse
Affiliation(s)
| | | | | | | | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (H.d.J.); (L.I.); (M.M.); (G.P.)
| |
Collapse
|
2
|
Using Serological Proteome Analysis to Identify and Evaluate Anti-GRP78 Autoantibody as Biomarker in the Detection of Gastric Cancer. JOURNAL OF ONCOLOGY 2020; 2020:9430737. [PMID: 33381181 PMCID: PMC7762641 DOI: 10.1155/2020/9430737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 01/03/2023]
Abstract
The serological biomarkers as noninvasive tests are the most promising way for diagnosing gastric cancer (GC). Serological proteome analysis (SERPA) has been used to identify tumor-associated antigens (TAAs) and the corresponding autoantibodies in many studies. To explore the relationship between gastric cancer development and serum autoantibody anti-GRP78 response found by the method of SERPA with the GC cell line AGS, we included two cohorts (133 GC and 133 normal individuals in test group; 300 GC and 300 normal individuals in validation group) of patients with newly diagnosed GC for verification. All GC and normal controls were matched by age and gender. The autoantibody levels of the sera in two cohorts were measured by immunoassay. Finally, the results showed that 78-kDa glucose-regulated protein (GRP78) was identified in GC by SERPA and the level of anti-GRP78 antibody in GC was higher than that in normal individuals in the two cohorts. Receiver operating characteristic (ROC) curve analysis showed similar diagnostic value of anti-GRP78 antibody in test group (AUC: 0.718) and validation group (AUC: 0.666) to identify GC patients from normal individuals. The AUCs of anti-GRP78 autoantibody in the diagnosis of GC patients with different clinical characteristic ranged from 0.676 to 0.773 in test group and ranged from 0.645 to 0.707 in validation group. In conclusion, autoantibody against GRP78 might be a potential diagnostic biomarker. Further large-scale studies will be needed to validate and improve its performance of the sensitivity, specificity, and AUC value in distinguishing GC from other diseases.
Collapse
|
3
|
Garranzo-Asensio M, San Segundo-Acosta P, Povés C, Fernández-Aceñero MJ, Martínez-Useros J, Montero-Calle A, Solís-Fernández G, Sanchez-Martinez M, Rodríguez N, Cerón MÁ, Fernandez-Diez S, Domínguez G, de Los Ríos V, Peláez-García A, Guzmán-Aránguez A, Barderas R. Identification of tumor-associated antigens with diagnostic ability of colorectal cancer by in-depth immunomic and seroproteomic analysis. J Proteomics 2020; 214:103635. [PMID: 31918032 DOI: 10.1016/j.jprot.2020.103635] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/02/2020] [Accepted: 01/05/2020] [Indexed: 12/18/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer related death worldwide. Its diagnosis at early stages would significantly improve the survival of CRC patients. The humoral immune response has been demonstrated useful for cancer diagnosis, predating clinical symptoms up to 3 years. Here, we employed an in-depth seroproteomic approach to identify proteins that elicit a humoral immune response in CRC patients. The seroproteomic approach relied on the immunoprecipitation with patient-derived autoantibodies of proteins from CRC cell lines with different metastatic properties followed by LC-MS/MS. After bioinformatics, we focused on 31 targets of CRC autoantibodies. After WB and IHC validation, ERP44 and TALDO1 showed potential to discriminate disease-free and metastatic CRC patients, and time to recurrence of CRC patients in stage II. Using plasma samples of 30 healthy individuals, 28 premalignant individuals, and 32 CRC patients, nine out of 13 selected targets for seroreactive analysis showed significant diagnostic ability to discriminate either CRC patients or premalignant subjects from controls. Our results suggest that the here defined panel of CRC autoantibodies and their target proteins should be included in CRC blood-based biomarker panels to get a clinically useful blood-based diagnostic signature for CRC detection. SIGNIFICANCE: Colorectal cancer is one of the deadliest cancer types mainly due to its late diagnosis. Its early diagnosis, therefore, is of great importance since it would significantly improve the survival of CRC patients. In our work, the in-depth seroproteomic analysis of colorectal cancer using isolated IgGs from colorectal cancer patients and controls and protein extract of colorectal cancer cells provide the identification of valuable biomarkers with diagnostic and prognostic ability of the disease.
Collapse
Affiliation(s)
- María Garranzo-Asensio
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Majadahonda E-28220, Madrid, Spain
| | - Pablo San Segundo-Acosta
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Majadahonda E-28220, Madrid, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Carmen Povés
- Gastroenterology Unit, Hospital Universitario Clínico San Carlos, E-28040 Madrid, Spain
| | | | - Javier Martínez-Useros
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, E-28040 Madrid, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Majadahonda E-28220, Madrid, Spain
| | | | | | - Nuria Rodríguez
- Medical Oncology Department, Hospital Universitario La Paz, E-28046 Madrid, Spain
| | - María Ángeles Cerón
- Surgical Pathology Department, Hospital Universitario Clínico San Carlos, E-28040 Madrid, Spain
| | | | - Gemma Domínguez
- Departamento de Medicina, Facultad de Medicina, Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, E-28029 Madrid, Spain
| | | | | | - Ana Guzmán-Aránguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, Majadahonda E-28220, Madrid, Spain.
| |
Collapse
|
4
|
Lee PY, Saraygord-Afshari N, Low TY. The evolution of two-dimensional gel electrophoresis - from proteomics to emerging alternative applications. J Chromatogr A 2020; 1615:460763. [DOI: 10.1016/j.chroma.2019.460763] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 01/05/2023]
|
5
|
Kobayashi M, Katayama H, Fahrmann JF, Hanash SM. Development of autoantibody signatures for common cancers. Semin Immunol 2020; 47:101388. [DOI: 10.1016/j.smim.2020.101388] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/01/2020] [Indexed: 12/14/2022]
|
6
|
Rammal G, Fahs A, Kobeissy F, Mechref Y, Zhao J, Zhu R, Diab-Assaf M, Saab R, Ghayad SE. Proteomic Profiling of Rhabdomyosarcoma-Derived Exosomes Yield Insights into Their Functional Role in Paracrine Signaling. J Proteome Res 2019; 18:3567-3579. [PMID: 31448612 DOI: 10.1021/acs.jproteome.9b00157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Exosomes are important intercellular communication vehicles, secreted into body fluids by multiple cell types, including tumor cells. They have been demonstrated to contribute to the metastatic progression of tumor cells through paracrine signaling. Tumor exosomes contain intact and functional proteins, mRNA and miRNA that may alter the cellular environment to favor tumor growth. We evaluated the protein cargo of exosomes derived from the childhood tumor rhabdomyosarcoma (RMS) and the molecular pathways they are implicated in to decipher their role in the progression of this aggressive disease. We conducted a mass spectrometry analysis of exosome content isolated from five RMS cell lines: three of embryonal RMS (ERMS) and two of alveolar RMS (ARMS) histology and verified results by multiple reaction monitoring and western blot analyses. Results revealed 161 common proteins in ERMS-derived exosomes and 122 common proteins in ARMS-derived exosomes, of which 81 proteins were common to both subtypes. Using both PANTHER gene classification and Pathway Studio software, we assessed the perturbed biological processes and altered pathways in which the exosomal proteins are involved. The 81 commonly expressed proteins included those involved in "cell-signaling," "cell-movement," and "cancer." Pathways engaging the identified proteins revealed 37 common pathways including "integrin signaling pathway," "inflammation mediated by chemokine and cytokine signaling pathway," and "angiogenesis." Finally, a comparison of exosomal proteins of RMS cells with publicly available datasets from other cancer cells revealed that 36 proteins are specific and endogenous to the RMS-exosomes. Taken together, our results reveal that RMS-derived exosomes carry a protein cargo that contributes to conserved cellular signaling networks across multiple cell lines, and we also identify RMS exosome-specific proteins that should be further evaluated as possible novel biomarkers for this tumor.
Collapse
Affiliation(s)
| | | | | | - Yehia Mechref
- Department of Chemistry & Biochemistry , Texas Tech University , Lubbock 79409 , United States
| | - Jingfu Zhao
- Department of Chemistry & Biochemistry , Texas Tech University , Lubbock 79409 , United States
| | - Rui Zhu
- Department of Chemistry & Biochemistry , Texas Tech University , Lubbock 79409 , United States
| | | | | | | |
Collapse
|
7
|
Lin H, Rogers GT, Lunetta KL, Levy D, Miao X, Troy LM, Jacques PF, Murabito JM. Healthy diet is associated with gene expression in blood: the Framingham Heart Study. Am J Clin Nutr 2019; 110:742-749. [PMID: 31187853 PMCID: PMC6736078 DOI: 10.1093/ajcn/nqz060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 03/21/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Genes in metabolic and nutrient signaling pathways play important roles in lifespan in model organisms and human longevity. OBJECTIVE The aim of this study was to examine the relation of a quantitative measure of healthy diet to gene expression in a community-based cohort. METHODS We used the 2015 Dietary Guidelines for Americans Adherence Index (DGAI) score to quantify key dietary recommendations of an overall healthy diet. Our current analyses included 2220 Offspring participants (mean age 66 ± 9 y, 55.4% women) and 2941 Third-Generation participants (mean age 46 ± 9 y, 54.5% women) from the Framingham Heart Study. Gene expression was profiled in blood through the use of the Affymetrix Human Exon 1.0 ST Array. We conducted a transcriptome-wide association study of DGAI adjusting for age, sex, smoking, cell counts, and technical covariates. We also constructed a combined gene score from genes significantly associated with DGAI. RESULTS The DGAI was significantly associated with the expression of 19 genes (false discovery rate <0.05). The most significant gene, ARRDC3, is a member of the arrestin family of proteins, and evidence in animal models and human data suggests that this gene is a regulator of obesity and energy expenditure. The DGAI gene score was associated with body mass index (P = 1.4 × 10-50), fasting glucose concentration (P = 2.5 × 10-11), type 2 diabetes (P = 1.1 × 10-5), and metabolic syndrome (P = 1.8 × 10-32). CONCLUSIONS Healthier diet was associated with genes involved in metabolic function. Further work is needed to replicate our findings and investigate the relation of a healthy diet to altered gene regulation.
Collapse
Affiliation(s)
- Honghuang Lin
- National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA
- Sections of Computational Biomedicine and
| | - Gail T Rogers
- Friedman School of Nutrition Science and Policy and the Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| | - Kathryn L Lunetta
- National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Daniel Levy
- National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Xiao Miao
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lisa M Troy
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA
| | - Paul F Jacques
- Friedman School of Nutrition Science and Policy and the Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| | - Joanne M Murabito
- National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA
- General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA
| |
Collapse
|
8
|
Qin J, Wang S, Wang P, Wang X, Ye H, Song C, Dai L, Wang K, Jiang B, Zhang J. Autoantibody against 14-3-3 zeta: a serological marker in detection of gastric cancer. J Cancer Res Clin Oncol 2019; 145:1253-1262. [PMID: 30887154 DOI: 10.1007/s00432-019-02884-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/28/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE Autoantibody to 14-3-3 zeta was identified in gastric cancer (GC) by serological proteome analysis (SERPA) in our previous study. We comprehensively evaluated its ability to detect GC, determined its association with clinical characteristics, and explored its temporal change in GC patients before and after gastrectomy resection in this study. METHODS Anti-14-3-3 zeta antibody was examined by immunoassay in sera from 465 GC patients and 465 normal individuals, and also in 69 serial sera from 26 GC patients before and after resection. RESULTS The frequency of anti-14-3-3 zeta were significantly higher in GC group than in control group, with AUC of 0.627. The appearance of anti-14-3-3 zeta showed no difference in different tumor stage, tumor size, tumor differentiation, and lymphatic metastasis, but was higher in GC patients with family tumor history than without family tumor history. When anti-14-3-3 zeta was combined with clinical markers (CEA, CA199 and CA724), the sensitivity increased to 52.7%. In the follow-up analysis, the titer of anti-14-3-3 zeta was higher in post-resection sera than pre-resection sera, and no difference was observed in CEA, CA199 and CA724. Anti-14-3-3 zeta showed an increase from negative status to positive status in six patients after resection, while other three clinical markers presented different change in GC patients after resection. CONCLUSIONS Autoantibody against 14-3-3 zeta could be a potential diagnostic biomarker and improve the sensitivity of CEA, CA199 and CA724 in diagnosis of GC. Further largescale studies will be needed to validate its performance in GC patients after resection.
Collapse
Affiliation(s)
- Jiejie Qin
- Department of Epidemiology and Health statistics, Henan Key Laboratory for Tumor Epidemiology, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Shuaibing Wang
- Department of Epidemiology and Health statistics, Henan Key Laboratory for Tumor Epidemiology, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
- Third Affiliated Hospital of Zhengzhou University, 23 Kangfu Road, Zhengzhou, 450052, China
| | - Peng Wang
- Department of Epidemiology and Health statistics, Henan Key Laboratory for Tumor Epidemiology, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Xiao Wang
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, 40 N Daxue Road, Zhengzhou, Henan, China
| | - Hua Ye
- Department of Epidemiology and Health statistics, Henan Key Laboratory for Tumor Epidemiology, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Chunhua Song
- Department of Epidemiology and Health statistics, Henan Key Laboratory for Tumor Epidemiology, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Liping Dai
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, 40 N Daxue Road, Zhengzhou, Henan, China
| | - Kaijuan Wang
- Department of Epidemiology and Health statistics, Henan Key Laboratory for Tumor Epidemiology, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Binghua Jiang
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, 40 N Daxue Road, Zhengzhou, Henan, China
| | - Jianying Zhang
- Department of Epidemiology and Health statistics, Henan Key Laboratory for Tumor Epidemiology, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China.
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, 40 N Daxue Road, Zhengzhou, Henan, China.
| |
Collapse
|