1
|
Chaudhary P, Mitra D, Das Mohapatra PK, Oana Docea A, Mon Myo E, Janmeda P, Martorell M, Iriti M, Ibrayeva M, Sharifi-Rad J, Santini A, Romano R, Calina D, Cho WC. Camellia sinensis: Insights on its molecular mechanisms of action towards nutraceutical, anticancer potential and other therapeutic applications. ARAB J CHEM 2023; 16:104680. [DOI: 10.1016/j.arabjc.2023.104680] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
2
|
Hohmann T, Hohmann U, Dehghani F. MACC1-induced migration in tumors: Current state and perspective. Front Oncol 2023; 13:1165676. [PMID: 37051546 PMCID: PMC10084939 DOI: 10.3389/fonc.2023.1165676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Malignant tumors are still a global, heavy health burden. Many tumor types cannot be treated curatively, underlining the need for new treatment targets. In recent years, metastasis associated in colon cancer 1 (MACC1) was identified as a promising biomarker and drug target, as it is promoting tumor migration, initiation, proliferation, and others in a multitude of solid cancers. Here, we will summarize the current knowledge about MACC1-induced tumor cell migration with a special focus on the cytoskeletal and adhesive systems. In addition, a brief overview of several in vitro models used for the analysis of cell migration is given. In this context, we will point to issues with the currently most prevalent models used to study MACC1-dependent migration. Lastly, open questions about MACC1-dependent effects on tumor cell migration will be addressed.
Collapse
|
3
|
Hagemann C, Neuhaus N, Dahlmann M, Kessler AF, Kobelt D, Herrmann P, Eyrich M, Freitag B, Linsenmann T, Monoranu CM, Ernestus RI, Löhr M, Stein U. Circulating MACC1 Transcripts in Glioblastoma Patients Predict Prognosis and Treatment Response. Cancers (Basel) 2019; 11:cancers11060825. [PMID: 31200581 PMCID: PMC6627447 DOI: 10.3390/cancers11060825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme is the most aggressive primary brain tumor of adults, but lacks reliable and liquid biomarkers. We evaluated circulating plasma transcripts of metastasis-associated in colon cancer-1 (MACC1), a prognostic biomarker for solid cancer entities, for prediction of clinical outcome and therapy response in glioblastomas. MACC1 transcripts were significantly higher in patients compared to controls. Low MACC1 levels clustered together with other prognostically favorable markers. It was associated with patients’ prognosis in conjunction with the isocitrate dehydrogenase (IDH) mutation status: IDH1 R132H mutation and low MACC1 was most favorable (median overall survival (OS) not yet reached), IDH1 wildtype and high MACC1 was worst (median OS 8.1 months), while IDH1 wildtype and low MACC1 was intermediate (median OS 9.1 months). No patients displayed IDH1 R132H mutation and high MACC1. Patients with low MACC1 levels receiving standard therapy survived longer (median OS 22.6 months) than patients with high MACC1 levels (median OS 8.1 months). Patients not receiving the standard regimen showed the worst prognosis, independent of MACC1 levels (low: 6.8 months, high: 4.4 months). Addition of circulating MACC1 transcript levels to the existing prognostic workup may improve the accuracy of outcome prediction and help define more precise risk categories of glioblastoma patients.
Collapse
Affiliation(s)
- Carsten Hagemann
- Tumorbiology Laboratory, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, D-97080 Würzburg, Germany.
| | - Nikolas Neuhaus
- Tumorbiology Laboratory, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, D-97080 Würzburg, Germany.
| | - Mathias Dahlmann
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, D-13125 Berlin, Germany.
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | - Almuth F Kessler
- Tumorbiology Laboratory, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, D-97080 Würzburg, Germany.
| | - Dennis Kobelt
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, D-13125 Berlin, Germany.
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | - Pia Herrmann
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, D-13125 Berlin, Germany.
| | - Matthias Eyrich
- Department of Pediatric Hematology/Oncology, University Children's Hospital, University of Würzburg, D-97080 Würzburg, Germany.
| | - Benjamin Freitag
- Department of Pediatric Hematology/Oncology, University Children's Hospital, University of Würzburg, D-97080 Würzburg, Germany.
| | - Thomas Linsenmann
- Tumorbiology Laboratory, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, D-97080 Würzburg, Germany.
| | - Camelia M Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str. 2, D-97080 Würzburg, Germany.
| | - Ralf-Ingo Ernestus
- Tumorbiology Laboratory, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, D-97080 Würzburg, Germany.
| | - Mario Löhr
- Tumorbiology Laboratory, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, D-97080 Würzburg, Germany.
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, D-13125 Berlin, Germany.
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| |
Collapse
|