1
|
Sodero AO, Castagna VC, Elorza SD, Gonzalez-Rodulfo SM, Paulazo MA, Ballestero JA, Martin MG, Gomez-Casati ME. Phytosterols reverse antiretroviral-induced hearing loss, with potential implications for cochlear aging. PLoS Biol 2023; 21:e3002257. [PMID: 37619212 PMCID: PMC10449472 DOI: 10.1371/journal.pbio.3002257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 07/18/2023] [Indexed: 08/26/2023] Open
Abstract
Cholesterol contributes to neuronal membrane integrity, supports membrane protein clustering and function, and facilitates proper signal transduction. Extensive evidence has shown that cholesterol imbalances in the central nervous system occur in aging and in the development of neurodegenerative diseases. In this work, we characterize cholesterol homeostasis in the inner ear of young and aged mice as a new unexplored possibility for the prevention and treatment of hearing loss. Our results show that cholesterol levels in the inner ear are reduced during aging, an effect that is associated with an increased expression of the cholesterol 24-hydroxylase (CYP46A1), the main enzyme responsible for cholesterol turnover in the brain. In addition, we show that pharmacological activation of CYP46A1 with the antiretroviral drug efavirenz reduces the cholesterol content in outer hair cells (OHCs), leading to a decrease in prestin immunolabeling and resulting in an increase in the distortion product otoacoustic emissions (DPOAEs) thresholds. Moreover, dietary supplementation with phytosterols, plant sterols with structure and function similar to cholesterol, was able to rescue the effect of efavirenz administration on the auditory function. Altogether, our findings point towards the importance of cholesterol homeostasis in the inner ear as an innovative therapeutic strategy in preventing and/or delaying hearing loss.
Collapse
Affiliation(s)
- Alejandro O. Sodero
- Instituto de Investigaciones Biomédicas, Pontificia Universidad Católica Argentina, Consejo Nacional de Investigaciones Científicas y Técnicas (BIOMED, UCA-CONICET), Buenos Aires, Argentina
| | - Valeria C. Castagna
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas (INGEBI-CONICET), Buenos Aires, Argentina
| | - Setiembre D. Elorza
- Laboratorio de Neurobiología, Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET-UNC), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Sara M. Gonzalez-Rodulfo
- Instituto de Investigaciones Biomédicas, Pontificia Universidad Católica Argentina, Consejo Nacional de Investigaciones Científicas y Técnicas (BIOMED, UCA-CONICET), Buenos Aires, Argentina
| | - María A. Paulazo
- Instituto de Investigaciones Biomédicas, Pontificia Universidad Católica Argentina, Consejo Nacional de Investigaciones Científicas y Técnicas (BIOMED, UCA-CONICET), Buenos Aires, Argentina
| | - Jimena A. Ballestero
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mauricio G. Martin
- Laboratorio de Neurobiología, Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas (INIMEC-CONICET-UNC), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Eugenia Gomez-Casati
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
2
|
Carollia perspicillata: A Small Bat with Tremendous Translational Potential for Studies of Brain Aging and Neurodegeneration. Biomedicines 2021; 9:biomedicines9101454. [PMID: 34680571 PMCID: PMC8533637 DOI: 10.3390/biomedicines9101454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/04/2021] [Accepted: 10/10/2021] [Indexed: 11/30/2022] Open
Abstract
As the average human lifespan lengthens, the impact of neurodegenerative disease increases, both on the individual suffering neurodegeneration and on the community that supports those individuals. Studies aimed at understanding the mechanisms of neurodegeneration have relied heavily on observational studies of humans and experimental studies in animals, such as mice, in which aspects of brain structure and function can be manipulated to target mechanistic steps. An animal model whose brain is structurally closer to the human brain, that lives much longer than rodents, and whose husbandry is practical may be valuable for mechanistic studies that cannot readily be conducted in rodents. To demonstrate that the long-lived Seba’s short-tailed fruit bat, Carollia perspicillata, may fit this role, we used immunohistochemical labeling for NeuN and three calcium-binding proteins, calretinin, parvalbumin, and calbindin, to define hippocampal formation anatomy. Our findings demonstrate patterns of principal neuron organization that resemble primate and human hippocampal formation and patterns of calcium-binding protein distribution that help to define subregional boundaries. Importantly, we present evidence for a clear prosubiculum in the bat brain that resembles primate prosubiculum. Based on the similarities between bat and human hippocampal formation anatomy, we suggest that Carollia has unique advantages for the study of brain aging and neurodegeneration. A captive colony of Carollia allows age tracking, diet and environment control, pharmacological manipulation, and access to behavioral, physiological, anatomical, and molecular evaluation.
Collapse
|
3
|
Pinna A, Colasanti A. The Neurometabolic Basis of Mood Instability: The Parvalbumin Interneuron Link-A Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:689473. [PMID: 34616292 PMCID: PMC8488267 DOI: 10.3389/fphar.2021.689473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
The neurobiological bases of mood instability are poorly understood. Neuronal network alterations and neurometabolic abnormalities have been implicated in the pathophysiology of mood and anxiety conditions associated with mood instability and hence are candidate mechanisms underlying its neurobiology. Fast-spiking parvalbumin GABAergic interneurons modulate the activity of principal excitatory neurons through their inhibitory action determining precise neuronal excitation balance. These interneurons are directly involved in generating neuronal networks activities responsible for sustaining higher cerebral functions and are especially vulnerable to metabolic stress associated with deficiency of energy substrates or mitochondrial dysfunction. Parvalbumin interneurons are therefore candidate key players involved in mechanisms underlying the pathogenesis of brain disorders associated with both neuronal networks' dysfunction and brain metabolism dysregulation. To provide empirical support to this hypothesis, we hereby report meta-analytical evidence of parvalbumin interneurons loss or dysfunction in the brain of patients with Bipolar Affective Disorder (BPAD), a condition primarily characterized by mood instability for which the pathophysiological role of mitochondrial dysfunction has recently emerged as critically important. We then present a comprehensive review of evidence from the literature illustrating the bidirectional relationship between deficiency in mitochondrial-dependent energy production and parvalbumin interneuron abnormalities. We propose a mechanistic explanation of how alterations in neuronal excitability, resulting from parvalbumin interneurons loss or dysfunction, might manifest clinically as mood instability, a poorly understood clinical phenotype typical of the most severe forms of affective disorders. The evidence we report provides insights on the broader therapeutic potential of pharmacologically targeting parvalbumin interneurons in psychiatric and neurological conditions characterized by both neurometabolic and neuroexcitability abnormalities.
Collapse
Affiliation(s)
- Antonello Pinna
- School of Life Sciences, University of Sussex, Brighton, United Kingdom.,Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Alessandro Colasanti
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
4
|
Desantis S, Minervini S, Zallocco L, Cozzi B, Pirone A. Age-Related Changes in the Primary Motor Cortex of Newborn to Adult Domestic Pig Sus scrofa domesticus. Animals (Basel) 2021; 11:2019. [PMID: 34359147 PMCID: PMC8300406 DOI: 10.3390/ani11072019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
The pig has been increasingly used as a suitable animal model in translational neuroscience. However, several features of the fast-growing, immediately motor-competent cerebral cortex of this species have been adequately described. This study analyzes the cytoarchitecture of the primary motor cortex (M1) of newborn, young and adult pigs (Sus scrofa domesticus). Moreover, we investigated the distribution of the neural cells expressing the calcium-binding proteins (CaBPs) (calretinin, CR; parvalbumin, PV) throughout M1. The primary motor cortex of newborn piglets was characterized by a dense neuronal arrangement that made the discrimination of the cell layers difficult, except for layer one. The absence of a clearly recognizable layer four, typical of the agranular cortex, was noted in young and adult pigs. The morphometric and immunohistochemical analyses revealed age-associated changes characterized by (1) thickness increase and neuronal density (number of cells/mm2 of M1) reduction during the first year of life; (2) morphological changes of CR-immunoreactive neurons in the first months of life; (3) higher density of CR- and PV-immunopositive neurons in newborns when compared to young and adult pigs. Since most of the present findings match with those of the human M1, this study strengthens the growing evidence that the brain of the pig can be used as a potentially valuable translational animal model during growth and development.
Collapse
Affiliation(s)
- Salvatore Desantis
- Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, 70010 Valenzano, Italy; (S.D.); (S.M.)
| | - Serena Minervini
- Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, 70010 Valenzano, Italy; (S.D.); (S.M.)
| | | | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy;
| | - Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
5
|
Yoo YH, Kim DW, Chen BH, Sim H, Kim B, Lee JC, Ahn JH, Park Y, Cho JH, Kang IJ, Won MH, Lee TK. Comparison of age-dependent alterations in thioredoxin 2 and thioredoxin reductase 2 expressions in hippocampi between mice and rats. Lab Anim Res 2021; 37:11. [PMID: 33676586 PMCID: PMC7937215 DOI: 10.1186/s42826-021-00088-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/25/2021] [Indexed: 11/10/2022] Open
Abstract
Background Aging is one of major causes triggering neurophysiological changes in many brain substructures, including the hippocampus, which has a major role in learning and memory. Thioredoxin (Trx) is a class of small redox proteins. Among the Trx family, Trx2 plays an important role in the regulation of mitochondrial membrane potential and is controlled by TrxR2. Hitherto, age-dependent alterations in Trx2 and TrxR2 in aged hippocampi have been poorly investigated. Therefore, the aim of this study was to examine changes in Trx2 and TrxR2 in mouse and rat hippocampi by age and to compare their differences between mice and rats. Results Trx2 and TrxR2 levels using Western blots in mice were the highest at young age and gradually reduced with time, showing that no significant differences in the levels were found between the two subfields. In rats, however, their expression levels were the lowest at young age and gradually increased with time. Nevertheless, there were no differences in cellular distribution and morphology in their hippocampi when it was observed by cresyl violet staining. In addition, both Trx2 and TrxR2 immunoreactivities in the CA1-3 fields were mainly shown in pyramidal cells (principal cells), showing that their immunoreactivities were altered like changes in their protein levels. Conclusions Our current findings suggest that Trx2 and TrxR2 expressions in the brain may be different according to brain regions, age and species. Therefore, further studies are needed to examine the reasons of the differences of Trx2 and TrxR2 expressions in the hippocampus between mice and rats.
Collapse
Affiliation(s)
- Yeon Ho Yoo
- Department of Emergency Medicine, Institute of Medical Sciences, School of Medicine, Kangwon National University Hospital, Kangwon National University, 24289, Chuncheon, Gangwon, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, 25457, Gangneung, Gangwon, Republic of Korea
| | - Bai Hui Chen
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, P.R. China
| | - Hyejin Sim
- Department of Neurobiology, School of Medicine, Kangwon National University, 24341, Chuncheon, Gangwon, Republic of Korea
| | - Bora Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, 24341, Chuncheon, Gangwon, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, 24341, Chuncheon, Gangwon, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, 24341, Chuncheon, Gangwon, Republic of Korea.,Department of Physical Therapy, College of Health Science, Youngsan University, 50510, Yangsan, Gyeongnam, Republic of Korea
| | - Yoonsoo Park
- Department of Emergency Medicine, Institute of Medical Sciences, School of Medicine, Kangwon National University Hospital, Kangwon National University, 24289, Chuncheon, Gangwon, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, Institute of Medical Sciences, School of Medicine, Kangwon National University Hospital, Kangwon National University, 24289, Chuncheon, Gangwon, Republic of Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, 24252, Chuncheon, Gangwon, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, 24341, Chuncheon, Gangwon, Republic of Korea.
| | - Tae-Kyeong Lee
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, 24252, Chuncheon, Gangwon, Republic of Korea.
| |
Collapse
|
6
|
Fiuza FP, Queiroz JPG, Aquino ACQ, Câmara DA, Brandão LEM, Lima RH, Cavalcanti JRLP, Engelberth RCGJ, Cavalcante JS. Aging Alters Daily and Regional Calretinin Neuronal Expression in the Rat Non-image Forming Visual Thalamus. Front Aging Neurosci 2021; 13:613305. [PMID: 33716710 PMCID: PMC7943479 DOI: 10.3389/fnagi.2021.613305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/01/2021] [Indexed: 11/29/2022] Open
Abstract
Aging affects the overall physiology, including the image-forming and non-image forming visual systems. Among the components of the latter, the thalamic retinorecipient inter-geniculate leaflet (IGL) and ventral lateral geniculate (vLGN) nucleus conveys light information to subcortical regions, adjusting visuomotor, and circadian functions. It is noteworthy that several visual related cells, such as neuronal subpopulations in the IGL and vLGN are neurochemically characterized by the presence of calcium binding proteins. Calretinin (CR), a representative of such proteins, denotes region-specificity in a temporal manner by variable day–night expression. In parallel, age-related brain dysfunction and neurodegeneration are associated with abnormal intracellular concentrations of calcium. Here, we investigated whether daily changes in the number of CR neurons are a feature of the aged IGL and vLGN in rats. To this end, we perfused rats, ranging from 3 to 24 months of age, within distinct phases of the day, namely zeitgeber times (ZTs). Then, we evaluated CR immunolabeling through design-based stereological cell estimation. We observed distinct daily rhythms of CR expression in the IGL and in both the retinorecipient (vLGNe) and non-retinorecipient (vLGNi) portions of the vLGN. In the ZT 6, the middle of the light phase, the CR cells are reduced with aging in the IGL and vLGNe. In the ZT 12, the transition between light to dark, an age-related CR loss was found in all nuclei. While CR expression predominates in specific spatial domains of vLGN, age-related changes appear not to be restricted at particular portions. No alterations were found in the dark/light transition or in the middle of the dark phase, ZTs 0, and 18, respectively. These results are relevant in the understanding of how aging shifts the phenotype of visual related cells at topographically organized channels of visuomotor and circadian processing.
Collapse
Affiliation(s)
- Felipe P Fiuza
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - José Pablo G Queiroz
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Antônio Carlos Q Aquino
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Diego A Câmara
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Luiz Eduardo M Brandão
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ramon H Lima
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - José Rodolfo L P Cavalcanti
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Health Science Center, University of State of Rio Grande do Norte, Mossoró, Brazil
| | - Rovena Clara G J Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jeferson S Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
7
|
Increased Calbindin D28k Expression via Long-Term Alternate-Day Fasting Does Not Protect against Ischemia-Reperfusion Injury: A Focus on Delayed Neuronal Death, Gliosis and Immunoglobulin G Leakage. Int J Mol Sci 2021; 22:ijms22020644. [PMID: 33440708 PMCID: PMC7827208 DOI: 10.3390/ijms22020644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 01/02/2023] Open
Abstract
Calbindin-D28k (CB), a calcium-binding protein, mediates diverse neuronal functions. In this study, adult gerbils were fed a normal diet (ND) or exposed to intermittent fasting (IF) for three months, and were randomly assigned to sham or ischemia operated groups. Ischemic injury was induced by transient forebrain ischemia for 5 min. Short-term memory was examined via passive avoidance test. CB expression was investigated in the Cornu Ammonis 1 (CA1) region of the hippocampus via western blot analysis and immunohistochemistry. Finally, histological analysis was used to assess neuroprotection and gliosis (microgliosis and astrogliosis) in the CA1 region. Short-term memory did not vary significantly between ischemic gerbils with IF and those exposed to ND. CB expression was increased significantly in the CA1 pyramidal neurons of ischemic gerbils with IF compared with that of gerbils fed ND. However, the CB expression was significantly decreased in ischemic gerbils with IF, similarly to that of ischemic gerbils exposed to ND. The CA1 pyramidal neurons were not protected from ischemic injury in both groups, and gliosis (astrogliosis and microgliosis) was gradually increased with time after ischemia. In addition, immunoglobulin G was leaked into the CA1 parenchyma from blood vessels and gradually increased with time after ischemic insult in both groups. Taken together, our study suggests that IF for three months increases CB expression in hippocampal CA1 pyramidal neurons; however, the CA1 pyramidal neurons are not protected from transient forebrain ischemia. This failure in neuroprotection may be attributed to disruption of the blood–brain barrier, which triggers gliosis after ischemic insults.
Collapse
|
8
|
Vishnyakova PA, Moiseev KY, Spirichev AA, Emanuilov AI, Nozdrachev AD, Masliukov PM. Expression of calbindin and calretinin in the dorsomedial and ventromedial hypothalamic nuclei during aging. Anat Rec (Hoboken) 2020; 304:1094-1104. [DOI: 10.1002/ar.24536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/03/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Polina A. Vishnyakova
- Department of Normal Physiology and Biophysics Yaroslavl State Medical University Yaroslavl Russia
| | - Konstantin Yu. Moiseev
- Department of Normal Physiology and Biophysics Yaroslavl State Medical University Yaroslavl Russia
| | - Andrey A. Spirichev
- Department of Normal Physiology and Biophysics Yaroslavl State Medical University Yaroslavl Russia
| | - Andrey I. Emanuilov
- Department of Normal Physiology and Biophysics Yaroslavl State Medical University Yaroslavl Russia
| | | | - Petr M. Masliukov
- Department of Normal Physiology and Biophysics Yaroslavl State Medical University Yaroslavl Russia
| |
Collapse
|
9
|
Rodríguez-Matellán A, Alcazar N, Hernández F, Serrano M, Ávila J. In Vivo Reprogramming Ameliorates Aging Features in Dentate Gyrus Cells and Improves Memory in Mice. Stem Cell Reports 2020; 15:1056-1066. [PMID: 33096049 PMCID: PMC7663782 DOI: 10.1016/j.stemcr.2020.09.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Post-translational epigenetic modifications take place in mouse neurons of the dentate gyrus (DG) with age. Here, we report that age-dependent reduction in H3K9 trimethylation (H3K9me3) is prevented by cyclic induction of the Yamanaka factors used for cell reprogramming. Interestingly, Yamanaka factors elevated the levels of migrating cells containing the neurogenic markers doublecortin and calretinin, and the levels of the NMDA receptor subunit GluN2B. These changes could result in an increase in the survival of newborn DG neurons during their maturation and higher synaptic plasticity in mature neurons. Importantly, these cellular changes were accompanied by an improvement in mouse performance in the object recognition test over long time. We conclude that transient cyclic reprogramming in vivo in the central nervous system could be an effective strategy to ameliorate aging of the central nervous system and neurodegenerative diseases.
Collapse
Affiliation(s)
- Alberto Rodríguez-Matellán
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa, CBMSO, CSIC-UAM, Madrid, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Noelia Alcazar
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Félix Hernández
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa, CBMSO, CSIC-UAM, Madrid, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Jesús Ávila
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa, CBMSO, CSIC-UAM, Madrid, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
10
|
Viena TD, Rasch GE, Silva D, Allen TA. Calretinin and calbindin architecture of the midline thalamus associated with prefrontal–hippocampal circuitry. Hippocampus 2020; 31:770-789. [DOI: 10.1002/hipo.23271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/27/2020] [Accepted: 10/06/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Tatiana D. Viena
- Cognitive Neuroscience Program, Department of Psychology Florida International University Miami Florida USA
| | - Gabriela E. Rasch
- Cognitive Neuroscience Program, Department of Psychology Florida International University Miami Florida USA
| | - Daniela Silva
- Cognitive Neuroscience Program, Department of Psychology Florida International University Miami Florida USA
| | - Timothy A. Allen
- Cognitive Neuroscience Program, Department of Psychology Florida International University Miami Florida USA
- Department of Environmental Health Sciences Robert Stempel College of Public Health, Florida International University Miami Florida USA
| |
Collapse
|
11
|
Ahn JH, Kim DW, Park CW, Kim B, Sim H, Kim HS, Lee TK, Lee JC, Yang GE, Her Y, Park JH, Sim TH, Lee HS, Won MH. Laminarin Attenuates Ultraviolet-Induced Skin Damage by Reducing Superoxide Anion Levels and Increasing Endogenous Antioxidants in the Dorsal Skin of Mice. Mar Drugs 2020; 18:E345. [PMID: 32629814 PMCID: PMC7401269 DOI: 10.3390/md18070345] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
A number of studies have demonstrated that marine carbohydrates display anti-oxidant, anti-melanogenic, and anti-aging activities in the skin. Laminarin (LA), a low-molecular-weight polysaccharide, is found in brown algae. The benefits of LA in ultraviolet B (UVB) induced photodamage of the skin have not been reported. The aim of this study was to investigate the effects of pre-treated LA on histopathological changes and oxidative damage in mouse dorsal skin on day 5, following repeated UVB exposure. Histopathology, Western blot analysis and immunohistochemical studies showed that epidermal thickness in the UVB group was significantly increased; however, the thickness in the UVB group treated with LA (LA/UVB group) was less compared with that of the UVB group. Collagen fibers in the dermis of the UVB group were significantly decreased and destroyed, whereas, in the LA/UVB group, the density of collagen fibers was significantly increased compared with that of the UVB group. Oxidative stress due to superoxide anion production measured via dihydroethidium fluorescence staining was dramatically increased in the UVB group, whereas in the LA/UVB group, the oxidative stress was significantly decreased. Expressions of SOD1, glutathione peroxidase and catalase were markedly reduced in the UVB group, whereas in the LA/UVB group, they were significantly higher along with SOD2 than in the control group. Taken together, our results indicate that LA pretreatment prevents or attenuates skin damage, by decreasing oxidative stress and increasing antioxidant enzymes in mouse dorsal skin.
Collapse
Affiliation(s)
- Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Korea; (J.H.A.); (T.-K.L.)
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (C.W.P.); (B.K.); (H.S.); (J.-C.L.)
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung, Gangwon 25457, Korea;
| | - Cheol Woo Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (C.W.P.); (B.K.); (H.S.); (J.-C.L.)
| | - Bora Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (C.W.P.); (B.K.); (H.S.); (J.-C.L.)
| | - Hyejin Sim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (C.W.P.); (B.K.); (H.S.); (J.-C.L.)
| | - Hyun Sook Kim
- Leefarm Co., Ltd., Hongcheon, Gangwon 25117, Korea; (H.S.K.); (T.H.S.)
| | - Tae-Kyeong Lee
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Korea; (J.H.A.); (T.-K.L.)
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (C.W.P.); (B.K.); (H.S.); (J.-C.L.)
| | - Go Eun Yang
- Department of Radiology, Kangwon National University Hospital, Chuncheon, Gangwon 24289, Korea;
| | - Young Her
- Department of Dermatology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Gangwon 24289, Korea;
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Korea;
| | - Tae Heung Sim
- Leefarm Co., Ltd., Hongcheon, Gangwon 25117, Korea; (H.S.K.); (T.H.S.)
| | - Hyun Sam Lee
- Leefarm Co., Ltd., Hongcheon, Gangwon 25117, Korea; (H.S.K.); (T.H.S.)
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (C.W.P.); (B.K.); (H.S.); (J.-C.L.)
| |
Collapse
|
12
|
Gattoni G, Bernocchi G. Calcium-Binding Proteins in the Nervous System during Hibernation: Neuroprotective Strategies in Hypometabolic Conditions? Int J Mol Sci 2019; 20:E2364. [PMID: 31086053 PMCID: PMC6540041 DOI: 10.3390/ijms20092364] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/06/2019] [Accepted: 05/11/2019] [Indexed: 02/07/2023] Open
Abstract
Calcium-binding proteins (CBPs) can influence and react to Ca2+ transients and modulate the activity of proteins involved in both maintaining homeostatic conditions and protecting cells in harsh environmental conditions. Hibernation is a strategy that evolved in vertebrate and invertebrate species to survive in cold environments; it relies on molecular, cellular, and behavioral adaptations guided by the neuroendocrine system that together ensure unmatched tolerance to hypothermia, hypometabolism, and hypoxia. Therefore, hibernation is a useful model to study molecular neuroprotective adaptations to extreme conditions, and can reveal useful applications to human pathological conditions. In this review, we describe the known changes in Ca2+-signaling and the detection and activity of CBPs in the nervous system of vertebrate and invertebrate models during hibernation, focusing on cytosolic Ca2+ buffers and calmodulin. Then, we discuss these findings in the context of the neuroprotective and neural plasticity mechanisms in the central nervous system: in particular, those associated with cytoskeletal proteins. Finally, we compare the expression of CBPs in the hibernating nervous system with two different conditions of neurodegeneration, i.e., platinum-induced neurotoxicity and Alzheimer's disease, to highlight the similarities and differences and demonstrate the potential of hibernation to shed light into part of the molecular mechanisms behind neurodegenerative diseases.
Collapse
Affiliation(s)
- Giacomo Gattoni
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | - Graziella Bernocchi
- Former Full Professor of Zoology, Neurogenesis and Comparative Neuromorphology, (Residence address) Viale Matteotti 73, I-27100 Pavia, Italy.
| |
Collapse
|
13
|
Henschke JU, Ohl FW, Budinger E. Crossmodal Connections of Primary Sensory Cortices Largely Vanish During Normal Aging. Front Aging Neurosci 2018; 10:52. [PMID: 29551970 PMCID: PMC5840148 DOI: 10.3389/fnagi.2018.00052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/15/2018] [Indexed: 11/22/2022] Open
Abstract
During aging, human response times (RTs) to unisensory and crossmodal stimuli decrease. However, the elderly benefit more from crossmodal stimulus representations than younger people. The underlying short-latency multisensory integration process is mediated by direct crossmodal connections at the level of primary sensory cortices. We investigate the age-related changes of these connections using a rodent model (Mongolian gerbil), retrograde tracer injections into the primary auditory (A1), somatosensory (S1), and visual cortex (V1), and immunohistochemistry for markers of apoptosis (Caspase-3), axonal plasticity (Growth associated protein 43, GAP 43), and a calcium-binding protein (Parvalbumin, PV). In adult animals, primary sensory cortices receive a substantial number of direct thalamic inputs from nuclei of their matched, but also from nuclei of non-matched sensory modalities. There are also direct intracortical connections among primary sensory cortices and connections with secondary sensory cortices of other modalities. In very old animals, the crossmodal connections strongly decrease in number or vanish entirely. This is likely due to a retraction of the projection neuron axonal branches rather than ongoing programmed cell death. The loss of crossmodal connections is also accompanied by changes in anatomical correlates of inhibition and excitation in the sensory thalamus and cortex. Together, the loss and restructuring of crossmodal connections during aging suggest a shift of multisensory processing from primary cortices towards other sensory brain areas in elderly individuals.
Collapse
Affiliation(s)
- Julia U Henschke
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department Genetics, Leibniz Institute for Neurobiology, Magdeburg, Germany.,German Center for Neurodegenerative Diseases within the Helmholtz Association, Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Frank W Ohl
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Institute of Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Eike Budinger
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|