1
|
Matuszyk J. MALAT1-miRNAs network regulate thymidylate synthase and affect 5FU-based chemotherapy. Mol Med 2022; 28:89. [PMID: 35922756 PMCID: PMC9351108 DOI: 10.1186/s10020-022-00516-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Background The active metabolite of 5-Fluorouracil (5FU), used in the treatment of several types of cancer, acts by inhibiting the thymidylate synthase encoded by the TYMS gene, which catalyzes the rate-limiting step in DNA replication. The major failure of 5FU-based cancer therapy is the development of drug resistance. High levels of TYMS-encoded protein in cancerous tissues are predictive of poor response to 5FU treatment. Expression of TYMS is regulated by various mechanisms, including involving non-coding RNAs, both miRNAs and long non-coding RNAs (lncRNAs). Aim To delineate the miRNAs and lncRNAs network regulating the level of TYMS-encoded protein. Main body Several miRNAs targeting TYMS mRNA have been identified in colon cancers, the levels of which can be regulated to varying degrees by lncRNAs. Due to their regulation by the MALAT1 lncRNA, these miRNAs can be divided into three groups: (1) miR-197-3p, miR-203a-3p, miR-375-3p which are downregulated by MALAT1 as confirmed experimentally and the levels of these miRNAs are actually reduced in colon and gastric cancers; (2) miR-140-3p, miR-330-3p that could potentially interact with MALAT1, but not yet supported by experimental results; (3) miR-192-5p, miR-215-5p whose seed sequences do not recognize complementary response elements within MALAT1. Considering the putative MALAT1-miRNAs interaction network, attention is drawn to the potential positive feedback loop causing increased expression of MALAT1 in colon cancer and hepatocellular carcinoma, where YAP1 acts as a transcriptional co-factor which, by binding to the TCF4 transcription factor/ β-catenin complex, may increase the activation of the MALAT1 gene whereas the MALAT1 lncRNA can inhibit miR-375-3p which in turn targets YAP1 mRNA. Conclusion The network of non-coding RNAs may reduce the sensitivity of cancer cells to 5FU treatment by upregulating the level of thymidylate synthase.
Collapse
Affiliation(s)
- Janusz Matuszyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigla Street, 53-114, Wroclaw, Poland.
| |
Collapse
|
2
|
Mi C, Zhang D, Li Y, Ren M, Ma W, Lu G, He S. miR-4677-3p participates proliferation and metastases of gastric cancer cell via CEMIP-PI3K/AKT signaling pathway. Cell Cycle 2021; 20:1978-1987. [PMID: 34437815 DOI: 10.1080/15384101.2021.1971375] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Gastric cancer is one of the top three leading causes of cancer-related death in the world. Evidence indicated that miR-4677-3p was dysregulated and involved in modulating invasion and migration in multiple types of cancer cells. The aim of this research is to explore the function and mechanism of miR-4677-3p in the development of gastric cancer. In this study, we discovered that miR-4677-3p was down-regulated in gastric cancer tissues and cells. Over-expression of miR-4677-3p suppressed the proliferation, migration and invasion of gastric cancer cells. Furthermore, miR-4677-3p directly bond to CEMIP 3'UTR region and inhibited CEMIP expression. CEMIP promoted cell proliferation, migration and invasion of gastric cancer cells via accelerating PI3K/AKT signaling pathway. siCEMIP or PI3K/AKT signaling inhibitor (Akti-1/2 and LY294002) partly reversed the effects of miR-4677-3p on the cellular growth and metastasis of gastric cancer. In general, miR-4677-3p regulated the development of gastric cancer through CEMIP-PI3K/AKT signaling pathway axis. This study verified the function and molecular mechanism of miR-4677-3p in gastric cancer cells, and may provide a potential diagnosis/prognosis target for patients with gastric cancer.
Collapse
Affiliation(s)
- Chen Mi
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi 'An City, Shaanxi Province, China
| | - Dan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi 'An City, Shaanxi Province, China
| | - Yarui Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi 'An City, Shaanxi Province, China
| | - Mudan Ren
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi 'An City, Shaanxi Province, China
| | - Wenhui Ma
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi 'An City, Shaanxi Province, China
| | - Guifang Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi 'An City, Shaanxi Province, China
| | - Shuixiang He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi 'An City, Shaanxi Province, China
| |
Collapse
|
3
|
Qiang F, Li J. CircCSNK1G1 Contributes to the Tumorigenesis of Gastric Cancer by Sponging miR-758 and Regulating ZNF217 Expression. Cancer Manag Res 2021; 13:5027-5038. [PMID: 34234548 PMCID: PMC8253995 DOI: 10.2147/cmar.s305767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/07/2021] [Indexed: 12/29/2022] Open
Abstract
Background Increasing evidence indicates that circular RNAs (circRNAs) act as vital regulators in various cancers. Nevertheless, the effect of circCSNK1G1 on gastric cancer (GC) is still unknown. Methods The mRNA levels of circCSNK1G1, miR-758, and ZNF217 were measured by RT-qPCR. The protein levels of ZNF217 were evaluated by Western blotting. Cell migration, invasion, proliferation, and apoptosis were detected by Transwell, CCK-8, and flow cytometry assays. The association between miR-758 and circCSNK1G1/ZNF217 was confirmed by RIP and luciferase reporter assays. Xenograft assay was employed for in vivo experiment. Results In the current study, it was demonstrated that the expression levels of circCSNK1G1 and ZNF217 were upregulated in GC tissues and cells, while the level of miR-758 was declined. Furthermore, functional assays indicated that circCSNK1G1 depletion suppressed GC progression in vitro and in vivo. In addition, circCSNK1G1 directly interacted with miR-758, and the supplementation of miR-758 suppressed the development of GC, which was abolished following pcDNA3.1-circCSNK1G1 transfection. Then, we explored the downstream mechanism of miR-758 and found that miR-758 could target the 3'UTR of ZNF217 mRNA. The overexpression of miR-758 neutralized the ZNF217-mediated effects on facilitating the progression of GC. Finally, we revealed that circCSNK1G1 could upregulate ZNF217 expression by sponging miR-758 in GC cells. Conclusion Our study revealed that circCSNK1G1 accelerated GC progression via the miR-758/ZNF217 axis, suggesting that circCSNK1G1 might be a potential biomarker for GC diagnosis and treatment.
Collapse
Affiliation(s)
- Feng Qiang
- Department of Gastroenterology, the First People's Hospital of Huzhou, Huzhou, 313000, People's Republic of China
| | - Jingjing Li
- Department of Gastroenterology, the First People's Hospital of Huzhou, Huzhou, 313000, People's Republic of China
| |
Collapse
|
4
|
MicroRNA-197 regulates chondrocyte proliferation, migration, and inflammation in pathogenesis of osteoarthritis by targeting EIF4G2. Biosci Rep 2021; 40:226296. [PMID: 32880393 PMCID: PMC7494986 DOI: 10.1042/bsr20192095] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022] Open
Abstract
Recent studies have demonstrated that microRNAs (miRNAs) are involved in many pathological conditions including osteoarthritis (OA). In the present study, we aimed to investigate the role of miR-197 in OA and the potential molecular mechanism. The expression levels of miR-197 were detected by quantitative real-time PCR analysis. Cell proliferation and migration abilities were performed by 3-(4,5-dimethylthiazol-2-yl)-2,5-di-phenyltetrazolium bromide and transwell assays. The concentrations of inflammatory cytokines, including IL-1β, IL-6, and TNF-α, were detect using ELISA assay. Furthermore, luciferase reporter and rescue assays were applied to identify the functional target gene of miR-197 in OA. The results showed that miR-197 expression was significantly down-regulated in the OA cartilage tissues compared with normal cartilage tissues, accompanied by up-regulation of EIF4G2 expression. An inverse correlation was found between EIF4G2 and miR-197 expressions in OA cartilage tissues. Treatment with miR-197 mimics promoted the growth and migration abilities of chondrocytes, while miR-197 inhibitors induced the opposite effects. Furthermore, restoration of miR-197 significantly decreased IL-1β, IL-6, and TNF-α expression, whereas knockdown of miR-197 led to a induction in these inflammatory mediators. Moreover, EIF4G2 was predicted and confirmed as a directly target of miR-197. Overexpressed miR-197 could down-regulate EIF4G2 expression in chondrocytes, while miR-197 knockdown could elevate EIF4G2 expression. Additionally, EIF4G2 overexpression reversed the effects of miR-197 mimics on chondrocytes proliferation, migration, and inflammation. Taken together, our study demonstrated that miR-197 promotes chondrocyte proliferation, increases migration, and inhibits inflammation in the pathogenesis of OA by targeting EIF4G2, indicating the potential therapeutic targets of the miR-197/EIF4G2 axis for OA treatment.
Collapse
|
5
|
Han X, Liu Z. Long non‑coding RNA JPX promotes gastric cancer progression by regulating CXCR6 and autophagy via inhibiting miR‑197. Mol Med Rep 2020; 23:60. [PMID: 33215222 PMCID: PMC7723066 DOI: 10.3892/mmr.2020.11698] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/11/2020] [Indexed: 12/27/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) serve a crucial role in gastric cancer (GC) progression. However, the molecular mechanism underlying lncRNA JPX transcript, XIST activator (JPX) in the tumorigenesis of GC is not completely understood. Reverse transcription-quantitative PCR (RT-qPCR) and western blotting were performed to detect gene expression. A luciferase reporter gene assay was conducted to determine the relationship between microRNA (miR)-197 and JPX or C-X-C motif chemokine receptor 6 (CXCR6). Cell viability, migration and invasion were determined by performing MTT, wound healing and Transwell assays, respectively. The Cancer Genome Atlas database and the RT-qPCR results indicated that JPX expression was upregulated and miR-197 expression was downregulated in patients with GC and in GC cells. Moreover, high JPX expression and low miR-197 expression in patients with GC indicated poor prognosis. miR-197 expression was directly inhibited by JPX. Compared with the short hairpin RNA (sh) negative control (NC) group, NCI-N87 and MKN-45 cells in the shJPX group displayed decreased cell viability and invasion, as well as a wider scratch width. NCI-N87 and MKN-45 cells in the shJPX + miR-197 inhibitor group had increased viability and invasion, but a narrower scratch width compared with the shJPX group. It was also identified that miR-197 directly inhibited CXCR6 expression. miR-197 inhibited Beclin1 protein expression and promoted p62 protein expression. Compared with the NC group, NCI-N87 and MKN-45 cells in the miR-197 mimic group had decreased cell viability and invasion, and a wider scratch width. Enhanced cell viability and invasion, and a narrower scratch width was also observed in the miR-197 mimic + CXCR6 and miR-197 mimic + Beclin1 groups, compared with the miR-197 mimic group. Collectively, the results indicated that lncRNA JPX promoted GC progression by regulating CXCR6 and autophagy via inhibiting miR-197. Furthermore, JPX knockdown regulated GC cell phenotype by promoting miR-197.
Collapse
Affiliation(s)
- Xuejing Han
- Department of Digestion, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210036, P.R. China
| | - Zheng Liu
- Department of Digestion, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210036, P.R. China
| |
Collapse
|
6
|
Kipkeeva F, Muzaffarova T, Korotaeva A, Nikulin M, Grishina K, Mansorunov D, Apanovich P, Karpukhin A. MicroRNA in Gastric Cancer Development: Mechanisms and Biomarkers. Diagnostics (Basel) 2020; 10:E891. [PMID: 33142817 PMCID: PMC7692123 DOI: 10.3390/diagnostics10110891] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/20/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is one of the most common and difficult diseases to treat. The study of signaling pathway regulation by microRNA provides information on the mechanisms of GC development and is the basis for biomarker creation. In this study, a circuit of microRNA interactions with signaling pathways was constructed. The microRNAs, associated with metastasis and chemoresistance, are described. In most cases, microRNAs in GC regulate the Wnt/β-catenin, PI3K/AKT/mTOR, RAS/RAF/ERK/MAPK, NF-kB, TGF-β, and JAK/STAT pathways. Part of the microRNA acts on several target genes that function in different pathways. This often leads to an intensification of the induced processes. MicroRNAs have also been described that have the opposite effect on different pathways, causing different functional consequences. By acting on several target genes, or genes associated with several pathways, microRNAs can function in a signaling network. MicroRNAs associated with metastasis most often interact with the Wnt/β-catenin pathway. MicroRNAs affecting chemoresistance, in most cases, affect the regulators of apoptosis and are associated with the PI3K/AKT/mTOR pathway. The characteristics of microRNAs proposed as candidates for GC biomarkers were analyzed. The currently developed diagnostic and prognostic panels of microRNAs are also considered.
Collapse
Affiliation(s)
- Fatimat Kipkeeva
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Tatyana Muzaffarova
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Alexandra Korotaeva
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Maxim Nikulin
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia;
| | - Kristina Grishina
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Danzan Mansorunov
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Pavel Apanovich
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Alexander Karpukhin
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| |
Collapse
|
7
|
Circular RNA circ_0026359 Enhances Cisplatin Resistance in Gastric Cancer via Targeting miR-1200/POLD4 Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5103272. [PMID: 32855967 PMCID: PMC7443216 DOI: 10.1155/2020/5103272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/18/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Human gastric cancer is one of the most common malignant tumors with a poor prognosis. Cisplatin (CDDP) is a well-known first-line chemotherapeutic drug. Acquired resistance retards the clinical application of CDDP in gastric cancer. In this study, circular RNA circ_0026359 was demonstrated to be overexpressed in gastric cancer tissues/cells compared with normal gastric tissues/cells and was overexpressed in CDDP-resistant gastric cancer tissues/cells compared with CDDP-sensitive gastric cancer tissues/cells. High levels of circ_0026359 were associated with low overall survival (OS) and relapse-free survival (RFS) rates in gastric cancer patients. circ_0026359 was examined to promote CDDP resistance in gastric cancer cells. circ_0026359 directly interacted and negatively regulated miR-1200. POLD4 was a direct target of miR-1200. miR-1200/POLD4 pathway mediated the promoting role of circ_0026359 in CDDP resistance of gastric cancer. circ_0026359 could be used as a potential target for CDDP-resistant gastric cancer therapy.
Collapse
|
8
|
Deng J, Zhang Q, Lu L, Fan C. Long Noncoding RNA DLGAP1-AS1 Promotes the Aggressive Behavior of Gastric Cancer by Acting as a ceRNA for microRNA-628-5p and Raising Astrocyte Elevated Gene 1 Expression. Cancer Manag Res 2020; 12:2947-2960. [PMID: 32431541 PMCID: PMC7197941 DOI: 10.2147/cmar.s246166] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/04/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose The long noncoding RNA DLGAP1 antisense RNA 1 (DLGAP1-AS1) plays well-defined roles in the malignant progression of hepatocellular carcinoma. The purpose of this study was to determine whether DLGAP1-AS1 affects the aggressive behavior of gastric cancer (GC). Methods DLGAP1-AS1 expression in GC tissue samples and cell lines was determined by reverse-transcription quantitative PCR. GC cell proliferation, apoptosis, migration, invasion, and tumor growth in vitro as well as in vivo were examined by the Cell Counting Kit-8 assay, flow-cytometric analysis, transwell migration and invasion assays, and xenograft model experiments, respectively. Results DLGAP1-AS1 was overexpressed in GC tissue samples and cell lines. Among patients with GC, the increased level of DLGAP1-AS1 correlated with tumor size, TNM stage, lymph node metastasis, distant metastasis, and shorter overall survival. The knockdown of DLGAP1-AS1 suppressed GC cell proliferation, migration, and invasion in vitro, as well as promoted cell apoptosis and hindered tumor growth in vivo. Mechanistically, DLGAP1-AS1 functioned as a competing endogenous RNA for microRNA-628-5p (miR-628-5p) in GC cells, thereby increasing the expression of the miR-628-5p target astrocyte elevated gene 1 (AEG-1). Functionally, the recovery of the miR-628-5p/AEG-1 axis output attenuated the effects of DLGAP1-AS1 knockdown in GC cells. Conclusion DLGAP1-AS1 is a pleiotropic oncogenic lncRNA in GC. DLGAP1-AS1 plays a pivotal part in the oncogenicity of GC in vitro and in vivo by regulating the miR-628-5p/AEG-1 axis. DLGAP1-AS1, miR-628-5p, and AEG-1 form a regulatory pathway to facilitate GC progression, suggesting this pathway as an effective target for the treatment of GC.
Collapse
Affiliation(s)
- Jiying Deng
- Department of General Surgery, Gaomi People's Hospital, Gaomi, Shandong 261500, People's Republic of China
| | - Qin Zhang
- Department of Neurosurgery, Gaomi People's Hospital, Gaomi, Shandong 261500, People's Republic of China
| | - Lianwei Lu
- Department of Radiology, Weifang People's Hospital, Weifang, Shandong 261000, People's Republic of China
| | - Chunxia Fan
- Department of General Surgery, Gaomi People's Hospital, Gaomi, Shandong 261500, People's Republic of China
| |
Collapse
|
9
|
Kong S, Yang Q, Tang C, Wang T, Shen X, Ju S. Identification of hsa_circ_0001821 as a Novel Diagnostic Biomarker in Gastric Cancer via Comprehensive Circular RNA Profiling. Front Genet 2019; 10:878. [PMID: 31616472 PMCID: PMC6764484 DOI: 10.3389/fgene.2019.00878] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022] Open
Abstract
Background: The morbidity and mortality of gastric cancer (GC) remain high worldwide. With the advent of the Human Genome Sequencing Project, circular RNAs (circRNAs) have attracted widespread attention in cancer research due to their stable ring structure. Our aim was to identify differentially expressed circRNAs in GC and explore their potential roles in GC diagnosis, treatment, and prognostic prediction. Methods: Large-scale gene screening was performed in three pairs of GC tissues and adjacent noncancerous tissues using high-throughput sequencing. The expression of hsa_circ_0001821 was detected in 80 pairs of tissue samples by quantitative real-time PCR (qRT-PCR). Stability of the ring structure of hsa_circ_0001821 RNA was verified by exonuclease digestion assay, and its diagnostic value was evaluated by receiver operating characteristic (ROC) analysis. In addition, the location of hsa_circ_0001821 in GC cells was detected by nucleoplasm separation assay. Results: A total of 25,303 circRNAs were identified, among which 2,007 circRNAs were differentially expressed (fold change > 2.0, P < 0.05). Further validation disclosed that hsa_circ_0001821 was significantly downregulated in the 80 pairs of GC tissues and 30 whole-blood specimens obtained from the GC patients. The specificity of hsa_circ_0001821 in GC was higher than that in other solid tumors. In addition, hsa_circ_0001821 was relatively stable after RNA exonuclease digestion. Clinicopathological parameter analysis showed that hsa_circ_0001821 was negatively correlated with tumor depth (r = −0.255, P = 0.022) and lymph node metastasis (r = −0.235, P = 0.036). Area under the curve (AUC) analysis showed that the diagnostic efficiency of circulating hsa_circ_0001821 in distinguishing GC patients was higher than that in GC tissues (0.872, 95%CI: 0.767–0.977 vs. 0.792, 95%CI: 0.723–0.861). Combined use of circulating hsa_circ_0001821 with the existing tumor markers yielded the largest AUC of 0.933. Finally, hsa_circ_0001821 was demonstrated to mainly locate in the cytoplasm, implying that it played a potential regulatory role in GC at the posttranscriptional level. Conclusion: Hsa_circ_0001821 may prove to be a new and promising potential biomarker for GC diagnosis.
Collapse
Affiliation(s)
- Shan Kong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Qian Yang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Chenxue Tang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Tianyi Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xianjuan Shen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
10
|
Wang F. miR-384 targets metadherin gene to suppress growth, migration, and invasion of gastric cancer cells. J Int Med Res 2019; 47:926-935. [PMID: 30614349 PMCID: PMC6381512 DOI: 10.1177/0300060518817171] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective MicroRNA-384 (miR-384) has been reported to function as a tumor suppressor in multiple cancers; however, its role in gastric cancer (GC) remains unclear. Methods We measured expression levels of miR-384 in GC cell lines and in a normal gastric cell line (GES-1). The association between miR-384 and the metadherin gene (MTDH) was assessed by luciferase reporter assay and western blot. The effects of the miR-384/MTDH axis on GC cell behaviors were measured by CCK-8, wound-healing, and transwell invasion assays. Results miR-384 was significantly downregulated in GC cell lines compared with normal gastric cells. MTDH was identified as a direct target of miR-384 by bioinformatics analysis, luciferase assay, and western blot. Functional assays demonstrated that miR-384 inhibited GC cell proliferation, migration, and invasion through targeting MTDH. Conclusion These results reveal that miR-384 acts as a tumor suppressor in GC and suggest that the miR-384/MTDH axis may be a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Fang Wang
- Nursing Department, Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Gulou District, Fuzhou, P. R. China
| |
Collapse
|