1
|
Li J, Chen Y, Li S, Lyu G, Yan F, Guo J, Cheng J, Chen Y, Lin J, Zeng Y. NAFPD exacerbation by hyperlipidemia combined with hyperuricemia: a pilot rat experiment in lipidomics. Front Nutr 2025; 11:1437373. [PMID: 39839297 PMCID: PMC11746073 DOI: 10.3389/fnut.2024.1437373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Background Hyperuricemia and non-alcoholic fatty pancreas disease (NAFPD) are prevalent metabolic diseases, but the relationship between them remains underexplored. Methods Eighteen Sprague-Dawley rats were randomly assigned to three groups: normal (CON), high-fat (PO), and high-fat high-uric acid (PH). After 12 weeks, serum uric acid (SUA) and triacylglycerol levels were measured. Pathological changes in the pancreas were assessed using hematoxylin-eosin (HE) staining. Serum samples were analyzed using lipidomics technology, and multivariate statistical analysis was employed to identify differences in lipid metabolism. Results SUA levels in the PO group were not significantly different from those in the CON group (p > 0.05). However, from the 4th week onward, SUA levels in the PH group were significantly higher than those in both the PO and CON groups (p < 0.05). HE staining revealed that most rats in the CON group exhibited normal pancreatic islet and acinar cell morphology. The pathological NAFPD score in the PH group was higher than that in the PO group. Lipidomics analysis identified 34 potential serum biomarkers in the CON and PO groups, 38 in the CON and PH groups, and 32 in the PH and PO groups. These metabolites primarily included sphingolipids, cholesterol esters, fatty acids, triacylglycerols, phosphatidylcholines, lysophosphatidylcholine, phosphatidylethanolamine, and lysophosphatidylethanolamine. Conclusion Hyperlipidemia combined with hyperuricemia might exacerbates NAFPD. Glycerophospholipids may serve as key biomarkers in this process, potentially linked to a chronic inflammatory response mediated by glycerophospholipids.
Collapse
Affiliation(s)
- Jingyun Li
- Department of Ultrasound, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Department of Medical Imaging, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Yongjian Chen
- Department of Ultrasound, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shilin Li
- Department of Ultrasound, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Guorong Lyu
- Department of Ultrasound, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Department of Medical Imaging, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Furong Yan
- Department of Molecular Diagnostics Research Center, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Jiajing Guo
- Department of Pathology, The 910th Hospital of the People's Liberation Army, Quanzhou, Fujian, China
| | - Jing Cheng
- Department of Animal Experimental Center, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Yun Chen
- Department of Internal Medicine, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Jiaojiao Lin
- Department of Ultrasound, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yating Zeng
- Department of Ultrasound, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
2
|
Singla M, Smriti, Gupta S, Behal P, Singh SK, Preetam S, Rustagi S, Bora J, Mittal P, Malik S, Slama P. Unlocking the power of nanomedicine: the future of nutraceuticals in oncology treatment. Front Nutr 2023; 10:1258516. [PMID: 38045808 PMCID: PMC10691498 DOI: 10.3389/fnut.2023.1258516] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/11/2023] [Indexed: 12/05/2023] Open
Abstract
Cancer, an intricate and multifaceted disease, is characterized by the uncontrolled proliferation of cells that can lead to serious health complications and ultimately death. Conventional therapeutic strategies mainly target rapidly dividing cancer cells, but often indiscriminately harm healthy cells in the process. As a result, there is a growing interest in exploring novel therapies that are both effective and less toxic to normal cells. Herbs have long been used as natural remedies for various diseases and conditions. Some herbal compounds exhibit potent anti-cancer properties, making them potential candidates for nutraceutical-based treatments. However, despite their promising efficacy, there are considerable limitations in utilizing herbal preparations due to their poor solubility, low bioavailability, rapid metabolism and excretion, as well as potential interference with other medications. Nanotechnology offers a unique platform to overcome these challenges by encapsulating herbal compounds within nanoparticles. This approach not only increases solubility and stability but also enhances the cellular uptake of nutraceuticals, allowing for controlled and targeted delivery of therapeutic agents directly at tumor sites. By harnessing the power of nanotechnology-enabled therapy, this new frontier in cancer treatment presents an opportunity to minimize toxicity while maximizing efficacy. In conclusion, this manuscript provides compelling evidence for integrating nanotechnology with nutraceuticals derived from herbal sources to optimize cancer therapy outcomes. We explore the roadblocks associated with traditional herbal treatments and demonstrate how nanotechnology can help circumvent these issues, paving the way for safer and more effective cancer interventions in future oncological practice.
Collapse
Affiliation(s)
- Madhav Singla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Smriti
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Saurabh Gupta
- Department of Pharmacology, Chameli Devi Institute of Pharmacy, Indore, Madhya Pradesh, India
| | - Prateek Behal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Jutishna Bora
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
| | - Pooja Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
- Department of Biotechnology, University Center for Research & Development (UCRD), Chandigarh University, Mohali, Punjab, India
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of Agri Sciences, Mendel University in Brno, Zemedelska, Brno, Czechia
| |
Collapse
|
3
|
Matsumori A. Nuclear Factor-κB is a Prime Candidate for the Diagnosis and Control of Inflammatory Cardiovascular Disease. Eur Cardiol 2023; 18:e40. [PMID: 37456770 PMCID: PMC10345985 DOI: 10.15420/ecr.2023.10] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/17/2023] [Indexed: 07/18/2023] Open
Abstract
Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is responsible for the regulation of genes involved in inflammation and immune responses. NF-κB may play an important role in cardiovascular diseases (CVDs), atherosclerosis and diabetes. Several therapeutic agents used for the treatment of CVDs and diabetes, such as pimobendan and sodium-glucose cotransporter 2 inhibitors, exert anti-inflammatory effects by inhibiting NF-κB activation; anti-inflammatory therapy may have beneficial effects in CVDs and diabetes. Several pharmacological agents and natural compounds may inhibit NF-κB, and these agents alone or in combination may be used to treat various inflammatory diseases. Immunoglobulin-free light chains could be surrogate biomarkers of NF-κB activation and may be useful for evaluating the efficacy of these agents. This review discusses recent advances in our understanding of how the NF-κB signalling pathway controls inflammation, metabolism and immunity, and how improved knowledge of these pathways may lead to better diagnostics and therapeutics for various human diseases.
Collapse
Affiliation(s)
- Akira Matsumori
- Clinical Research Institute, National Hospital Organization, Kyoto Medical Center Kyoto, Japan
| |
Collapse
|
4
|
Almatroodi SA, A. Alsahli M, S. M. Aljohani A, Alhumaydhi FA, Babiker AY, Khan AA, Rahmani AH. Potential Therapeutic Targets of Resveratrol, a Plant Polyphenol, and Its Role in the Therapy of Various Types of Cancer. Molecules 2022; 27:2665. [PMID: 35566016 PMCID: PMC9101422 DOI: 10.3390/molecules27092665] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
Cancer is among the most prominent causes of mortality worldwide. Different cancer therapy modes employed, including chemotherapy and radiotherapy, have been reported to be significant in cancer management, but the side effects associated with these treatment strategies are still a health problem. Therefore, alternative anticancer drugs based on medicinal plants or their active compounds have been generating attention because of their less serious side effects. Medicinal plants are an excellent source of phytochemicals that have been recognized to have health-prompting effects through modulating cell signaling pathways. Resveratrol is a well-known polyphenolic molecule with antioxidant, anti-inflammatory, and health-prompting effects among which its anticancer role has been best defined. Additionally, this polyphenol has confirmed its role in cancer management because it activates tumor suppressor genes, suppresses cell proliferation, induces apoptosis, inhibits angiogenesis, and modulates several other cell signaling molecules. The anticancer potential of resveratrol is recognized in numerous in vivo and in vitro studies. Previous experimental data suggested that resveratrol may be valuable in cancer management or improve the efficacy of drugs when given with anticancer drugs. This review emphasizes the potential role of resveratrol as an anticancer drug by modulating numerous cells signaling pathways in different types of cancer.
Collapse
Affiliation(s)
- Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Abdullah S. M. Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (S.A.A.); (M.A.A.); (F.A.A.); (A.Y.B.)
| |
Collapse
|
5
|
Resveratrol Ameliorates High-Fat-Diet-Induced Abnormalities in Hepatic Glucose Metabolism in Mice via the AMP-Activated Protein Kinase Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6616906. [PMID: 34257688 PMCID: PMC8253624 DOI: 10.1155/2021/6616906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 05/09/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus is highly prevalent worldwide. High-fat-diet (HFD) consumption can lead to liver fat accumulation, impair hepatic glycometabolism, and cause insulin resistance and the development of diabetes. Resveratrol has been shown to improve the blood glucose concentration of diabetic mice, but its effect on the abnormal hepatic glycometabolism induced by HFD-feeding and the mechanism involved are unknown. In this study, we determined the effects of resveratrol on the insulin resistance of high-fat-diet-fed mice and a hepatocyte model by measuring serum biochemical indexes, key indicators of glycometabolism, glucose uptake, and glycogen synthesis in hepatocytes. We found that resveratrol treatment significantly ameliorated the HFD-induced abnormalities in glucose metabolism in mice, increased glucose absorption and glycogen synthesis, downregulated protein phosphatase 2A (PP2A) and activated Ca2+/CaM-dependent protein kinase kinase β (CaMKKβ), and increased the phosphorylation of AMP-activated protein kinase (AMPK). In insulin-resistant HepG2 cells, the administration of a PP2A activator or CaMKKβ inhibitor attenuated the effects of resveratrol, but the administration of an AMPK inhibitor abolished the effects of resveratrol. Resveratrol significantly ameliorates abnormalities in glycometabolism induced by HFD-feeding and increases glucose uptake and glycogen synthesis in hepatocytes. These effects are mediated through the activation of AMPK by PP2A and CaMKKβ.
Collapse
|
6
|
Xu J, Zhang X, Sun X, Lv Q, Zhang Y. Red-Fleshed Apple Anthocyanin Extracts Attenuate Male Reproductive System Dysfunction Caused by Busulfan in Mice. Front Nutr 2021; 8:632483. [PMID: 34249984 PMCID: PMC8268157 DOI: 10.3389/fnut.2021.632483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/11/2021] [Indexed: 12/11/2022] Open
Abstract
In this research, we analyzed the effect of an intragastrical oral administration of red-fleshed apple anthocyanin extract (RAAE) on busulfan-treated mice. First, we showed that the most abundant component in RAAE was cyanidin 3-O-galactoside. To determine the effect of the RAAE, the mice were divided into control and four other different concentrations of RAAE feeding treatment groups (BA0, no RAAE; BA.1, 0.1 mg/kg; BA1, 1 mg/kg; and BA5, 5 mg/kg) following busulfan injection. We observed that RAAE treatments displayed ameliorative effects on male reproductive system dysfunction caused by busulfan, such as recovering the irregular arrangements of seminiferous tubules, increasing the number of spermatogonia and spermatocytes, improving sperm concentration by 3-fold in BA.1, and improving sperm motility by 2-fold in BA1. The liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis showed significant up- or downregulation of certain metabolites, such as lysophosphatidylcholine (LysoPC), L-arginine, glycine, anandamide, and L-carnitine, which could contribute to the positive effects of RAAE, especially in PBA1 (plasma of BA1) and PBA5 (plasma of BA5). Taken together, the results indicate that 1 mg/kg of RAAE is a suitable concentration for rescuing spermatogenesis in mice. The research suggests that RAAE could be a potential nutraceutical for protecting spermatogenesis after busulfan therapy in cancer.
Collapse
Affiliation(s)
- Jihua Xu
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xiang Zhang
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao, China
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Xiaohong Sun
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Qiang Lv
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yugang Zhang
- Qingdao Key Laboratory of Genetic Development and Breeding in Horticultural Plants, Qingdao Agricultural University, Qingdao, China
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
7
|
Odenkirk MT, Stratton KG, Gritsenko MA, Bramer LM, Webb-Robertson BJM, Bloodsworth KJ, Weitz KK, Lipton AK, Monroe ME, Ash JR, Fourches D, Taylor BD, Burnum-Johnson KE, Baker ES. Unveiling molecular signatures of preeclampsia and gestational diabetes mellitus with multi-omics and innovative cheminformatics visualization tools. Mol Omics 2020; 16:521-532. [PMID: 32966491 PMCID: PMC7736332 DOI: 10.1039/d0mo00074d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To fully enable the development of diagnostic tools and progressive pharmaceutical drugs, it is imperative to understand the molecular changes occurring before and during disease onset and progression. Systems biology assessments utilizing multi-omic analyses (e.g. the combination of proteomics, lipidomics, genomics, etc.) have shown enormous value in determining molecules prevalent in diseases and their associated mechanisms. Herein, we utilized multi-omic evaluations, multi-dimensional analysis methods, and new cheminformatics-based visualization tools to provide an in depth understanding of the molecular changes taking place in preeclampsia (PRE) and gestational diabetes mellitus (GDM) patients. Since PRE and GDM are two prevalent pregnancy complications that result in adverse health effects for both the mother and fetus during pregnancy and later in life, a better understanding of each is essential. The multi-omic evaluations performed here provide new insight into the end-stage molecular profiles of each disease, thereby supplying information potentially crucial for earlier diagnosis and treatments.
Collapse
Affiliation(s)
- Melanie T Odenkirk
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Heimesaat MM, Mousavi S, Escher U, Lobo de Sá FD, Peh E, Schulzke JD, Kittler S, Bücker R, Bereswill S. Resveratrol Alleviates Acute Campylobacter jejuni Induced Enterocolitis in a Preclinical Murine Intervention Study. Microorganisms 2020; 8:microorganisms8121858. [PMID: 33255723 PMCID: PMC7760181 DOI: 10.3390/microorganisms8121858] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
The polyphenolic compound resveratrol has been shown to exert health-beneficial properties. Given globally emerging Campylobacter infections in humans, we addressed potential anti-pathogenic, immuno-modulatory and intestinal epithelial barrier preserving properties of synthetic resveratrol in the present preclinical intervention study applying a murine acute campylobacteriosis model. Two days following peroral C. jejuni infection, secondary abiotic IL-10−/− mice were either subjected to resveratrol or placebo via the drinking water. Whereas placebo mice suffered from acute enterocolitis at day 6 post-infection, resveratrol treatment did not only lead to improved clinical conditions, but also to less pronounced colonic epithelial apoptosis as compared to placebo application. Furthermore, C. jejuni induced innate and adaptive immune cell responses were dampened in the large intestines upon resveratrol challenge and accompanied by less colonic nitric oxide secretion in the resveratrol versus the placebo cohort. Functional analyses revealed that resveratrol treatment could effectively rescue colonic epithelial barrier function in C. jejuni infected mice. Strikingly, the disease-alleviating effects of resveratrol could additionally be found in extra-intestinal and also systemic compartments at day 6 post-infection. For the first time, our current preclinical intervention study provides evidence that peroral resveratrol treatment exerts potent disease-alleviating effects during acute experimental campylobacteriosis.
Collapse
Affiliation(s)
- Markus M. Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité—University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; (S.M.); (U.E.); (S.B.)
- Correspondence: ; Tel.: +49-30-450524318
| | - Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Charité—University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; (S.M.); (U.E.); (S.B.)
| | - Ulrike Escher
- Institute of Microbiology, Infectious Diseases and Immunology, Charité—University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; (S.M.); (U.E.); (S.B.)
| | - Fábia Daniela Lobo de Sá
- Institute of Clinical Physiology, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; (F.D.L.d.S.); (J.-D.S.); (R.B.)
| | - Elisa Peh
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (E.P.); (S.K.)
| | - Jörg-Dieter Schulzke
- Institute of Clinical Physiology, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; (F.D.L.d.S.); (J.-D.S.); (R.B.)
| | - Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (E.P.); (S.K.)
| | - Roland Bücker
- Institute of Clinical Physiology, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; (F.D.L.d.S.); (J.-D.S.); (R.B.)
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité—University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; (S.M.); (U.E.); (S.B.)
| |
Collapse
|
9
|
Lipidomic analysis of epithelial corneal cells following hyperosmolarity and benzalkonium chloride exposure: New insights in dry eye disease. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158728. [DOI: 10.1016/j.bbalip.2020.158728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/20/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
|
10
|
Xu X, Liu X, Yang Y, He J, Jiang M, Huang Y, Liu X, Liu L, Gu H. Resveratrol Exerts Anti-Osteoarthritic Effect by Inhibiting TLR4/NF-κB Signaling Pathway via the TLR4/Akt/FoxO1 Axis in IL-1β-Stimulated SW1353 Cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2079-2090. [PMID: 32581510 PMCID: PMC7274521 DOI: 10.2147/dddt.s244059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 05/09/2020] [Indexed: 12/25/2022]
Abstract
Purpose Osteoarthritis (OA) is associated with chronic low-grade inflammation. Resveratrol exerts protective effects on OA through its anti-inflammatory property; however, the mechanism of resveratrol on anti-inflammatory signaling pathways has not been fully elucidated yet. The aim of the present study was to investigate whether resveratrol-mediated PI3K/Akt expression is linked to TLR4/NF-κB pathway and the role of TLR4/Akt/FoxO1 axis in the anti-osteoarthritic effect of resveratrol. Methods SW1353 cells stimulated by IL-1β (10 ng/mL) were cultured in the presence or absence of resveratrol (50 μM) and then treated with TLR4 siRNA, PI3K inhibitor LY294002 or FoxO1 siRNA, respectively. The associated proteins of TLR4 signaling pathways and TLR4/Akt/FoxO1 axis were evaluated by Western blot. The level of IL-6 in the supernatant was detected by ELISA. Results IL-1β treatment increased the expression of TLR4/NF-κB and phosphorylation of PI3K/Akt and FoxO1, while additional resveratrol further upregulated the expression of PI3K/Akt and FoxO1 phosphorylation but downregulated TLR4 signals in SW1353 cells. Further analyses by the inhibition of TLR4, PI3K/Akt and FoxO1 signaling pathways, respectively, showed that the activation of TLR4 can induce PI3K/Akt phosphorylation, which increases the phosphorylation of FoxO1 and inactivates it. Next, inactivated-FoxO1 can reduce the expression of TLR4, which forms a self-limiting mechanism of inflammation. Resveratrol treatment can upregulate PI3K/Akt phosphorylation and inactivate FoxO1, thereby reducing TLR4 and inflammation. Conclusion This study reveals that TLR4/Akt/FoxO1 inflammatory self-limiting mechanism may exist in IL-1β-stimulated SW1353 cells. This study reveals a novel cross-talk mechanism which is between integrated PI3K/Akt/FoxO1 signaling network and TLR4-driven innate responses in IL-1β-stimulated SW1353 cells. Resveratrol may exert anti-OA effect by enhancing the self-limiting mechanism of inflammation through TLR4/Akt/FoxO1 axis.
Collapse
Affiliation(s)
- Xiaolei Xu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, People's Republic of China.,Department of Nutrition and Food Hygiene, School of Public Health, Beihua University, Jilin, People's Republic of China
| | - Xudan Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Yingchun Yang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Jianyi He
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Mengqi Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Yue Huang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Xiaotong Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Li Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Hailun Gu
- Department of Orthopedics, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
11
|
Phenolic Compounds Exerting Lipid-Regulatory, Anti-Inflammatory and Epigenetic Effects as Complementary Treatments in Cardiovascular Diseases. Biomolecules 2020; 10:biom10040641. [PMID: 32326376 PMCID: PMC7226566 DOI: 10.3390/biom10040641] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is the main process behind cardiovascular diseases (CVD), maladies which continue to be responsible for up to 70% of death worldwide. Despite the ongoing development of new and potent drugs, their incomplete efficacy, partial intolerance and numerous side effects make the search for new alternatives worthwhile. The focus of the scientific world turned to the potential of natural active compounds to prevent and treat CVD. Essential for effective prevention or treatment based on phytochemicals is to know their mechanisms of action according to their bioavailability and dosage. The present review is focused on the latest data about phenolic compounds and aims to collect and correlate the reliable existing knowledge concerning their molecular mechanisms of action to counteract important risk factors that contribute to the initiation and development of atherosclerosis: dyslipidemia, and oxidative and inflammatory-stress. The selection of phenolic compounds was made to prove their multiple benefic effects and endorse them as CVD remedies, complementary to allopathic drugs. The review also highlights some aspects that still need clear scientific explanations and draws up some new molecular approaches to validate phenolic compounds for CVD complementary therapy in the near future.
Collapse
|
12
|
Wang D, Gao Z, Zhang X. Resveratrol Induces Apoptosis in Murine Prostate Cancer Cells via Hypoxia-Inducible Factor 1-alpha (HIF-1α)/Reactive Oxygen Species (ROS)/P53 Signaling. Med Sci Monit 2018; 24:8970-8976. [PMID: 30531685 PMCID: PMC6298174 DOI: 10.12659/msm.913290] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Resveratrol, a polyphenol found on the surface of red fruits, is able to suppress many kinds of malignancies. Nevertheless, its mechanism of action is not yet clear. Consequently, this study aimed to elucidate its influence and explore the etiology of PCCs (prostate cancer cells). MATERIAL AND METHODS The proliferation of prostate cancer cells was determined by CCK-8 assay. Cell apoptosis was determined by Hoechst staining FC assay. Cell migration was detected by scratch test. The levels of apoptosis-related protein were detected by Western blot analysis. RESULTS It was discovered that resveratrol suppresses cellular survival and migration and enhances cell death. In addition, it was revealed that resveratrol elevated ROS concentration and expression of biomarker of cell death Bax, while inhibiting Bcl2, an anti-apoptotic protein, and reinforcing expression of p53. Moreover, resveratrol remarkably increased the expressions of HIF-1α and p53 in PC cells. Resveratrol suppressed cell survival and promoted cell death, but its effects were reversed after HIF-1α knockdown, suggesting that the effects of resveratrol in PC are mediated via HIF-1α. CONCLUSIONS Our findings indicate that resveratrol induces apoptosis via HIF-1α/ROS/p53 signaling in prostate cancer cells and may be a useful therapeutic agent against prostate cancer.
Collapse
Affiliation(s)
- Delong Wang
- Department of Urology Surgery, The Affiliated Zhongshan Hospital Dalian University, Dalian, Liaoning, China (mainland)
| | - Zefeng Gao
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Xin Zhang
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
13
|
Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi-Rad M, Fokou PVT, Martins N, Sharifi-Rad J. Resveratrol: A Double-Edged Sword in Health Benefits. Biomedicines 2018; 6:E91. [PMID: 30205595 PMCID: PMC6164842 DOI: 10.3390/biomedicines6030091] [Citation(s) in RCA: 609] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 12/18/2022] Open
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene) belongs to polyphenols' stilbenoids group, possessing two phenol rings linked to each other by an ethylene bridge. This natural polyphenol has been detected in more than 70 plant species, especially in grapes' skin and seeds, and was found in discrete amounts in red wines and various human foods. It is a phytoalexin that acts against pathogens, including bacteria and fungi. As a natural food ingredient, numerous studies have demonstrated that resveratrol possesses a very high antioxidant potential. Resveratrol also exhibit antitumor activity, and is considered a potential candidate for prevention and treatment of several types of cancer. Indeed, resveratrol anticancer properties have been confirmed by many in vitro and in vivo studies, which shows that resveratrol is able to inhibit all carcinogenesis stages (e.g., initiation, promotion and progression). Even more, other bioactive effects, namely as anti-inflammatory, anticarcinogenic, cardioprotective, vasorelaxant, phytoestrogenic and neuroprotective have also been reported. Nonetheless, resveratrol application is still being a major challenge for pharmaceutical industry, due to its poor solubility and bioavailability, as well as adverse effects. In this sense, this review summarized current data on resveratrol pharmacological effects.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran 88777539, Iran.
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran 22439789, Iran.
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal 246174, Uttarakhand, India.
| | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal 246174, Uttarakhand, India.
| | - Bilge Sener
- Gazi University Faculty of Pharmacy Department of Pharmacognosy, Ankara 06330, Turkey.
| | - Mehtap Kilic
- Gazi University Faculty of Pharmacy Department of Pharmacognosy, Ankara 06330, Turkey.
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol 61663335, Iran.
| | - Patrick Valere Tsouh Fokou
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, Annex Fac. Sci, P.O. Box. 812, Yaounde-Cameroon.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto 4200-319, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto 4200-135, Portugal.
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran.
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB R3B 2G3, Canada.
| |
Collapse
|
14
|
Resveratrol alleviates LPS-induced injury in human keratinocyte cell line HaCaT by up-regulation of miR-17. Biochem Biophys Res Commun 2018; 501:106-112. [DOI: 10.1016/j.bbrc.2018.04.184] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 12/18/2022]
|