1
|
Alaaeldin R, Hassan HA, Abdel-Rahman IM, Mohyeldin RH, Youssef N, Allam AE, Abdelwahab SF, Zhao QL, Fathy M. A New EGFR Inhibitor from Ficus benghalensis Exerted Potential Anti-Inflammatory Activity via Akt/PI3K Pathway Inhibition. Curr Issues Mol Biol 2022; 44:2967-2981. [PMID: 35877429 PMCID: PMC9324879 DOI: 10.3390/cimb44070205] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 12/22/2022] Open
Abstract
Inflammation is a critical defensive mechanism mainly arising due to the production of prostaglandins via cyclooxygenase enzymes. This study aimed to examine the anti-inflammatory activity of fatty acid glucoside (FAG), which is isolated from Ficus benghalensis against lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The cytotoxic activity of the FAG on RAW 264.7 macrophages was evaluated with an MTT assay. The levels of PGE2 and NO and the activity of iNOS, COX-1, and COX-2 enzymes in LPS-stimulated RAW 264.7 cells were evaluated. The gene expression of IL-6, TNF-α, and PGE2 was investigated by qRT-PCR. The expression of epidermal growth factor receptor (EGFR), Akt, and PI3K proteins was examined using Western blotting analysis. Furthermore, molecular docking of the new FAG against EGFR was investigated. A non-cytotoxic concentration of FAG increased NO release and iNOS activity, inhibited COX-1 and COX-2 activities, and reduced PGE2 levels in LPS-stimulated RAW 264.7 cells. It diminished the expression of TNF-α, IL-6, PGE2, EGFR, Akt, and PI3K. Furthermore, the molecular docking study proposed the potential direct binding of FAG with EGFR with a high affinity. This study showed that FAG is a natural EGFR inhibitor, NO-releasing, and COX-inhibiting anti-inflammatory agent via EGFR/Akt/PI3K pathway inhibition.
Collapse
Affiliation(s)
- Rania Alaaeldin
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt;
| | - Heba Ali Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| | - Islam M. Abdel-Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt;
| | - Reham H. Mohyeldin
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt;
| | - Nancy Youssef
- Department of Clinical Pathology, Faculty of Medicine, Minia University, Minia 61512, Egypt;
| | - Ahmed E. Allam
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt;
| | - Sayed F. Abdelwahab
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Qing-Li Zhao
- Department of Radiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
2
|
Zhang P, Zhou Y, Fang Q, Lin H, Xiao J. Proteomic analysis of early phosphorylated proteins in acute pancreatitis model. CURR PROTEOMICS 2021. [DOI: 10.2174/1570164618666211130144858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background and Objective:
The exact mechanism of acute pancreatitis (AP), which is an inflammation of the pancreas, still remains unclear. In this study, we examined the protein phosphorylation changes during the early stage of AP in mice using proteomic analysis.
Methods:
AP model in mice was constructed using an intraperitoneal injection of cerulein. Blood samples and pancreas were collected at 1, 3, 6, 9h after the final injection (n=3 at each time point). Samples collected 3h after the final injection were separately mixed and named S (saline group) and C1 (cerulein group); samples collected 6h after the final injection from the cerulein group were mixed and named C2. Proteins from S, C1, and C2 were extracted, digested by trypsin, and subjected to LC-MS/MS analysis, bioinformatics analysis, and Western blotting.
Results:
A total of 549 sites (426 proteins) were upregulated, and 501 sites (367 proteins) were downregulated in C1 compared to S; while 491 phosphorylation sites (377 proteins) were upregulated and 367 sites (274 proteins) were downregulated in C2 compared to S. Motif analysis showed that proline-directed kinase and basophilic kinase had a key role during early AP. During an early AP stage, the cellular distributions of proteins slightly changed. The types of domains changed with the development of AP. Phosphorylation proteins associated with calcium signaling, especially IP3R mediated calcium release, lysosome and autophagosome pathway, pancreatic digestive activation, and secretion, were found to be involved in the development of early AP independent of NF-kB activation. Moreover, the MAPK family was found to have a greater impact at the early stage of AP. We also found differentially expressed phosphorylations of amylase and trypsinogen and increased phosphorylation of MAPK6 S189 in early AP.
Conclusion:
IP3R mediated calcium release and activation of MAPK family are key events promoting the development of early AP.
Collapse
Affiliation(s)
- Pengcheng Zhang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Yuan Zhou
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Qiangqiang Fang
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Houmin Lin
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Juan Xiao
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| |
Collapse
|
3
|
Pan L, Niu Z, Gao Y, Wang L, Liu Z, Liu J, Sun J, Pei H. Silencing of CREB Inhibits HDAC2/TLR4/NF-κB Cascade to Relieve Severe Acute Pancreatitis-Induced Myocardial Injury. Inflammation 2021; 44:1565-1580. [PMID: 33725236 DOI: 10.1007/s10753-021-01441-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 02/06/2021] [Accepted: 02/19/2021] [Indexed: 02/08/2023]
Abstract
The purpose of the present study is to investigate the role of CREB in cardiomyocytes proliferation in regulation of HDAC2-dependent TLR4/NF-κB pathway in severe acute pancreatitis (SAP)-induced myocardial injury. The SAP rat model was developed by injecting sodium touracholate into SD rats and then infected with lentivirus vectors expressing sh-CREB in the presence/absence of LPS. The pathological alterations of rat pancreatic and cardiac tissues were observed by HE staining. TUNEL assay was used to study apoptosis of cardiomyocytes. Next, the loss- and gain-function assay was conducted in LPS-induced myocardial injury cardiomyocytes to define the roles of CREB, HDAC2, and TLR4 in cardiomyocyte proliferation, apoptosis, inflammation, and myocardial injury in vitro. ChIP assay was used to study the enrichment of CREB bound to HDAC2 promoter. RT-qPCR and Western blot analysis were used to detect the expressions of related mRNA and proteins in the NF-κB pathway, respectively. CREB was found to be overexpressed in both SAP tissues and cells. CREB directly bound to the promoter of HDAC2 and activated its expression. Overexpressed CREB or HDAC2 inhibited proliferation and promoted apoptosis of cardiomyocytes. Suppression of CREB inhibited the HDAC2/TLR4/NF-κB cascade to promote proliferation and inhibit apoptosis of cardiomyocytes. The in vitro results were validated in vivo experiments. Coherently, suppression of CREB can inhibit HDAC2/TLR4/NF-κB cascade to promote cardiomyocyte proliferation, thus ameliorating SAP-induced myocardial injury.
Collapse
Affiliation(s)
- Longfei Pan
- Department of Emergency, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, 710004, Xi'an, Shaanxi Province, People's Republic of China.
| | - Zequn Niu
- Department of Emergency, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, 710004, Xi'an, Shaanxi Province, People's Republic of China
| | - Yanxia Gao
- Department of Emergency, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, 710004, Xi'an, Shaanxi Province, People's Republic of China
| | - Liming Wang
- Department of Emergency, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, 710004, Xi'an, Shaanxi Province, People's Republic of China
| | - Zhong Liu
- Department of Emergency, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, 710004, Xi'an, Shaanxi Province, People's Republic of China
| | - Jie Liu
- Department of Emergency, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, 710004, Xi'an, Shaanxi Province, People's Republic of China
| | - Jiangli Sun
- Department of Emergency, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, 710004, Xi'an, Shaanxi Province, People's Republic of China
| | - Honghong Pei
- Department of Emergency, the Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xincheng District, 710004, Xi'an, Shaanxi Province, People's Republic of China
| |
Collapse
|
4
|
Mehran S, Rasmi Y, Karamdel HR, Hossinzadeh R, Gholinejad Z. Study of the Binding Interaction between Wortmannin and Calf Thymus DNA: Multispectroscopic and Molecular Docking Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:4936351. [PMID: 31975999 PMCID: PMC6949734 DOI: 10.1155/2019/4936351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/08/2019] [Accepted: 10/16/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Wortmannin (WTN) is a steroid metabolite that inhibits phosphatidylinositol 3-kinase and other signaling pathways. Structurally, the WTN consists of a cyclopentanophenanthrene-like structure with several oxygen-rich moieties which have the potential to interact with deoxyribonucleic acid (DNA) molecules. METHODS We aim to evaluate the WTN and calf thymus DNA (ct-DNA) interaction with molecular docking using the AutoDock 4.2 software. UV and fluorescence spectroscopy and viscosity techniques were performed to confirm the in silico analysis. RESULTS Molecular docking showed that the WTN interacted with ct-DNA via hydrogen bonds at guanine-rich sequences. The number of hydrogen bonds between the WTN and DNA was 1-2 bonds (average 1.2) per WTN molecule. The in silico binding constant was 2 × 103 M-1. UV spectroscopy showed that the WTN induced a hyperchromic feature without wavelength shifting. The WTN and DNA interaction led to quenching of DNA-emitted fluorescence. The different concentrations of WTN had no effect on DNA viscosity. Taken together, our results demonstrated WTN interacts with DNA in the nonintercalating mode, which is considered as a new mechanism of action. CONCLUSION These results suggest that the WTN may exert its biological effects, at least in part, via interaction with DNA.
Collapse
Affiliation(s)
- Shiva Mehran
- Department of Biology, Higher Education Institute of Rabe-Rashidi, Tabriz, Iran
| | - Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Science, Urmia, Iran
| | - Hamid Reza Karamdel
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Science, Urmia, Iran
| | - Ramin Hossinzadeh
- Department of Microbiology, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Zafar Gholinejad
- Department of Medical Laboratory Science, Urmia Branch, Islamic Azad University, Urmia, Iran
| |
Collapse
|