1
|
Apolipoprotein J Attenuates Vascular Restenosis by Promoting Autophagy and Inhibiting the Proliferation and Migration of Vascular Smooth Muscle Cells. J Cardiovasc Transl Res 2022; 15:1086-1099. [PMID: 35244876 DOI: 10.1007/s12265-022-10227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/23/2022] [Indexed: 10/18/2022]
Abstract
This research investigated the mechanism of CLU in vascular restenosis by regulating vascular smooth muscle cell (VSMC) proliferation and migration. Firstly, rat models of balloon injury (BI) were established, followed by the assessment of the injury to the common carotid artery. The effect of CLU on the intimal hyperplasia of BI rats was measured after the intervention in CLU, in addition to the evaluation of proliferation, migration, and autophagy of VSMCs. Moreover, the interaction between ATG and LC3 was analyzed, followed by validation of the role of autophagy in CLU's regulation on the proliferation and migration of VSMCs. It was found that CLU was highly expressed in BI rats. Altogether, our findings indicated that CLU was highly expressed in vascular restenosis, and CLU over-expression promoted the binding between ATG3 and LC3, thus facilitating VSMC autophagy and eventually attenuating intimal hyperplasia and vascular restenosis.
Collapse
|
2
|
Wang X, Wu J, Zhang H, Sun B, Huang R. Dihydroartemisinin ameliorates balloon injury-induced neointimal formation through suppressing autophagy in vascular smooth muscle cells. Biol Chem 2021; 402:451-460. [PMID: 33938177 DOI: 10.1515/hsz-2020-0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/26/2020] [Indexed: 11/15/2022]
Abstract
The present study was designed to investigate the therapeutic effects of injection of dihydroartemisinin (DHA) into the balloon-injured carotid arteries on balloon injury-induced neointimal formation and to explore whether autophagy is involved in the action of DHA. Percutaneous transluminal balloon angioplasty was performed in Sprague-Dawley rats to induce neointimal formation, immediately after which DHA (100 μmol/l × 1 ml) and/or Rapamycin (1 mg/100 μl), were injected into the balloon-injured carotid arteries. After 14 days, the serum samples and carotid artery tissues were harvested for analysis. Rat aortic vascular smooth muscle cells (VSMCs) were pretreated with DMSO (vehicle), DHA (1, 10, and 100 μmol/l), or 3-methyladenine (3-MA; 10 mM) for 1 h and then stimulated with platelet-derived growth factor-BB (PDGF-BB; 10 ng/ml) for another 24 h. Animal experiments showed that DHA attenuated the balloon injury-induced neointimal formation, inflammation and VSMC phenotypic transition by inhibiting the balloon injury-induced autophagy activation. In vitro results showed that DHA attenuated the PDGF-BB-induced VSMC phenotypic transition, proliferation, and migration by inhibiting the PDGF-BB-induced autophagy activation. Taken together, DHA ameliorates balloon injury-induced neointimal formation through suppressing autophagy. This study provides insights into the development of a drug-eluting stent using DHA.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Junpeng Wu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Haiyang Zhang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin Medical University, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Renping Huang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin Medical University, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| |
Collapse
|
3
|
D'Amico A, Mir N, Wilkerson H, Andrikopoulou E, Kanter J. Definity, an affinity for painful crisis: a case series describing vaso-occlusive pain crises in sickle cell patients undergoing echocardiogram with Definity contrast. EUROPEAN HEART JOURNAL-CASE REPORTS 2021; 5:ytaa555. [PMID: 33598623 PMCID: PMC7873786 DOI: 10.1093/ehjcr/ytaa555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/01/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022]
Abstract
Background Individuals with sickle cell disease (SCD) are at risk for painful crises and long-term cardiopulmonary morbidity. Echocardiogram is recommended if signs or symptoms of cardiopulmonary disease develop in previously asymptomatic patients, or worsen in those with known disease. Second-generation echocardiogram contrast agents (ECAs) improve the diagnostic capacity of echocardiogram; however, these agents have risks in SCD populations that have yet to be investigated. Case summary We report a case series of two patients who experienced vaso-occlusive crises following administration of the ECA, Definity. Both patients were referred for echocardiogram from our institution's sickle cell clinic because of concern for SCD-related cardiopulmonary complications. Both patients were in their usual state of health at the time of their exams. The first patient experienced acute back and hip pain minutes after receiving Definity and was diagnosed with acute vaso-occlusive crisis requiring admission for 6 days for pain management. The second patient developed dyspnoea and chest pain within 90 min of her echocardiogram. She was diagnosed with acute chest syndrome and admitted for further management. Her hospitalization was complicated by hyper-haemolysis and multiple organ failure syndrome. After 13 days, she was discharged home. Discussion The safety profile of ECAs has not been fully evaluated and warrants further study in individuals with SCD. Proposed mechanisms for our observations include the release of pro-inflammatory metabolites from Definity contrast agent's shell and ultrasound-induced haemolysis secondary to ECA administration. Alternative imaging modalities and proper precautions should be considered when evaluating cardiopulmonary function in this patient population.
Collapse
Affiliation(s)
- Alex D'Amico
- School of Medicine, University of Alabama at Birmingham, 1670 University Blvd, Birmingham, AL 35233, USA
| | - Nabiel Mir
- Department of Medicine, University of Alabama at Birmingham, 1808 7th Ave South, Birmingham, AL 35233, USA
| | - Hunter Wilkerson
- Department of Medicine, University of Alabama at Birmingham, 1808 7th Ave South, Birmingham, AL 35233, USA
| | - Efstathia Andrikopoulou
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, 1808 7th Ave South, Birmingham, AL 35233, USA
| | - Julie Kanter
- Department of Medicine, Division of Hematology, University of Alabama at Birmingham, 1808 7th Ave South, Birmingham, AL 35233, USA
| |
Collapse
|
4
|
Knuplez E, Marsche G. An Updated Review of Pro- and Anti-Inflammatory Properties of Plasma Lysophosphatidylcholines in the Vascular System. Int J Mol Sci 2020; 21:E4501. [PMID: 32599910 PMCID: PMC7350010 DOI: 10.3390/ijms21124501] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Lysophosphatidylcholines are a group of bioactive lipids heavily investigated in the context of inflammation and atherosclerosis development. While present in plasma during physiological conditions, their concentration can drastically increase in certain inflammatory states. Lysophosphatidylcholines are widely regarded as potent pro-inflammatory and deleterious mediators, but an increasing number of more recent studies show multiple beneficial properties under various pathological conditions. Many of the discrepancies in the published studies are due to the investigation of different species or mixtures of lysophatidylcholines and the use of supra-physiological concentrations in the absence of serum or other carrier proteins. Furthermore, interpretation of the results is complicated by the rapid metabolism of lysophosphatidylcholine (LPC) in cells and tissues to pro-inflammatory lysophosphatidic acid. Interestingly, most of the recent studies, in contrast to older studies, found lower LPC plasma levels associated with unfavorable disease outcomes. Being the most abundant lysophospholipid in plasma, it is of utmost importance to understand its physiological functions and shed light on the discordant literature connected to its research. LPCs should be recognized as important homeostatic mediators involved in all stages of vascular inflammation. In this review, we want to point out potential pro- and anti-inflammatory activities of lysophospholipids in the vascular system and highlight recent discoveries about the effect of lysophosphatidylcholines on immune cells at the endothelial vascular interface. We will also look at their potential clinical application as biomarkers.
Collapse
Affiliation(s)
- Eva Knuplez
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
5
|
Bosetti M, Boffano P, Marchetti A, Leigheb M, Colli M, Brucoli M. The Number of Platelets in Patient's Blood Influences the Mechanical and Morphological Properties of PRP-Clot and Lysophosphatidic Acid Quantity in PRP. Int J Mol Sci 2019; 21:E139. [PMID: 31878214 PMCID: PMC6982162 DOI: 10.3390/ijms21010139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 12/13/2022] Open
Abstract
The objectives of this study were to compare platelet-rich plasma (PRP) from patients with different concentrations of platelets and to assess the influence of these PRP preparations on human osteoblast (hOB) activity. In the literature, growth factors released by activated platelets have been considered responsible for the active role of PRP on bone regeneration but no specific role has been attributed to lysophosphatidic acid (LPA) as a possible effector of biological responses. In this study, patients were grouped into either group A (poor in platelets) or group B (rich in platelets). Clots from PRP fraction 2 (F2-clots), obtained with CaCl2 activation of PRP from the two groups, were compared macroscopically and microscopically and for their mechanical properties before testing their activity on the proliferation and migration of hOB. LPA was quantified before and after PRP fractioning and activation. The fibrin network of F2-clots from patients with a lower platelet concentration had an organized structure with large and distinct fibers while F2-clots from patients in group B revealed a similar structure to those in group A but with a slight increase in density. ELISA results showed a significantly higher plasma level of LPA in patients with a higher platelet concentration (group B) in comparison to those in group A (p < 0.05). This different concentration was evidenced in PRP but not in the clots. Depending on the number of platelets in patient's blood, a PRP-clot with higher or lower mechanical properties can be obtained. The higher level of LPA in PRP from patients richer in platelets should be considered as responsible for the higher hOB activity in bone regeneration.
Collapse
Affiliation(s)
- Michela Bosetti
- Dipartimento di Scienze del Farmaco, University of Eastern Piedmont, L.go Donegani 2, 28100 Novara, Italy; (A.M.); (M.C.)
| | - Paolo Boffano
- Division of Maxillofacial Surgery, University of Eastern Piedmont, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (P.B.); (M.B.)
| | - Alice Marchetti
- Dipartimento di Scienze del Farmaco, University of Eastern Piedmont, L.go Donegani 2, 28100 Novara, Italy; (A.M.); (M.C.)
| | - Massimiliano Leigheb
- Dipartimento di Scienze della Salute, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy;
- Division of of Orthopaedics and Traumatology, University Hospital “Maggiore della Carità”, 28100 Novara, Italy
| | - Mattia Colli
- Dipartimento di Scienze del Farmaco, University of Eastern Piedmont, L.go Donegani 2, 28100 Novara, Italy; (A.M.); (M.C.)
| | - Matteo Brucoli
- Division of Maxillofacial Surgery, University of Eastern Piedmont, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (P.B.); (M.B.)
| |
Collapse
|
6
|
Yang J, Xu J, Han X, Wang H, Zhang Y, Dong J, Deng Y, Wang J. Lysophosphatidic Acid Is Associated With Cardiac Dysfunction and Hypertrophy by Suppressing Autophagy via the LPA3/AKT/mTOR Pathway. Front Physiol 2018; 9:1315. [PMID: 30283359 PMCID: PMC6157396 DOI: 10.3389/fphys.2018.01315] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 08/30/2018] [Indexed: 12/16/2022] Open
Abstract
Background: Lysophosphatidic acid (LPA), as a phospholipid signal molecule, participates in the regulation of various biological functions. Our previous study demonstrated that LPA induces cardiomyocyte hypertrophy in vitro; however, the functional role of LPA in the post-infarct heart remains unknown. Growing evidence has demonstrated that autophagy is involved in regulation of cardiac hypertrophy. The aim of the current work was to investigate the effects of LPA on cardiac function and hypertrophy during myocardial infarction (MI) and determine the regulatory role of autophagy in LPA-induced cardiomyocyte hypertrophy. Methods:In vivo experiments were conducted in Sprague-Dawley rats subjected to MI surgery or a sham operation, and rats with MI were assigned to receive an intraperitoneal injection of LPA (1 mg/kg) or vehicle for 5 weeks. The in vitro experiments were conducted in H9C2 cardiomyoblasts. Results: LPA treatment aggravated cardiac dysfunction, increased cardiac hypertrophy, and reduced autophagy after MI in vivo. LPA suppressed autophagy activation, as indicated by a decreased LC3II-to-LC3I ratio, increased p62 expression, and reduced autophagosome formation in vitro. Rapamycin, an autophagy enhancer, attenuated LPA-induced autophagy inhibition and H9C2 cardiomyoblast hypertrophy, while autophagy inhibition with Beclin1 siRNA did not further enhance the hypertrophic response in LPA-treated cardiomyocytes. Moreover, we demonstrated that LPA suppressed autophagy through the AKT/mTOR signaling pathway because mTOR and PI3K inhibitors significantly prevented LPA-induced mTOR phosphorylation and autophagy inhibition. In addition, we found that knockdown of LPA3 alleviated LPA-mediated autophagy suppression in H9C2 cardiomyoblasts, suggesting that LPA suppresses autophagy through activation of the LPA3 and AKT/mTOR pathways. Conclusion: These findings suggest that LPA plays an important role in mediating cardiac dysfunction and hypertrophy after a MI, and that LPA suppresses autophagy through activation of the LPA3 and AKT/mTOR pathways to induce cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Jinjing Yang
- Department of Cardiology, Shanxi Cardiovascular Disease Hospital, Taiyuan, China.,Shanxi Cardiovascular Disease Institute, Taiyuan, China.,Central Laboratory, Shanxi Cardiovascular Disease Hospital, Taiyuan, China
| | - Jiyao Xu
- Department of Cardiology, Shanxi Cardiovascular Disease Hospital, Taiyuan, China.,Shanxi Cardiovascular Disease Institute, Taiyuan, China
| | - Xuebin Han
- Department of Cardiology, Shanxi Cardiovascular Disease Hospital, Taiyuan, China.,Shanxi Cardiovascular Disease Institute, Taiyuan, China
| | - Hao Wang
- The Affiliated Cardiovascular Disease Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuean Zhang
- Department of Cardiology, Shanxi Cardiovascular Disease Hospital, Taiyuan, China.,Shanxi Cardiovascular Disease Institute, Taiyuan, China
| | - Jin Dong
- Department of Cardiology, Shanxi Cardiovascular Disease Hospital, Taiyuan, China.,Shanxi Cardiovascular Disease Institute, Taiyuan, China
| | - Yongzhi Deng
- Shanxi Cardiovascular Disease Institute, Taiyuan, China.,Department of Cardiovascular Surgery, Shanxi Cardiovascular Disease Hospital, Taiyuan, China
| | - Jingping Wang
- Department of Cardiology, Shanxi Cardiovascular Disease Hospital, Taiyuan, China.,Shanxi Cardiovascular Disease Institute, Taiyuan, China
| |
Collapse
|