1
|
Coates-Park S, Rich JA, Stetler-Stevenson WG, Peeney D. The TIMP protein family: diverse roles in pathophysiology. Am J Physiol Cell Physiol 2024; 326:C917-C934. [PMID: 38284123 PMCID: PMC11193487 DOI: 10.1152/ajpcell.00699.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
The tissue inhibitors of matrix metalloproteinases (TIMPs) are a family of four matrisome proteins classically defined by their roles as the primary endogenous inhibitors of metalloproteinases (MPs). Their functions however are not limited to MP inhibition, with each family member harboring numerous MP-independent biological functions that play key roles in processes such as inflammation and apoptosis. Because of these multifaceted functions, TIMPs have been cited in diverse pathophysiological contexts. Herein, we provide a comprehensive overview of the MP-dependent and -independent roles of TIMPs across a range of pathological conditions. The potential therapeutic and biomarker applications of TIMPs in these disease contexts are also considered, highlighting the biomedical promise of this complex and often misunderstood protein family.
Collapse
Affiliation(s)
- Sasha Coates-Park
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States
| | - Joshua A Rich
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States
| | - William G Stetler-Stevenson
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States
| | - David Peeney
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States
| |
Collapse
|
2
|
Chen R, Zhang Y, Zhao C. CHOP Increases TRIB3-Dependent miR-208 Expression to Potentiate Vascular Smooth Muscle Cell Proliferation and Migration by Downregulating TIMP3 in Atherosclerosis. Cardiovasc Drugs Ther 2022; 36:575-588. [PMID: 33856595 DOI: 10.1007/s10557-021-07154-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/05/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND C/EBP homologous protein (CHOP) has been identified as a suitable therapeutic target to combat atherosclerosis but the mechanism has not been fully studied. Here, we sought to define the role and underlying mechanism of CHOP in atherosclerosis. METHODS Mouse models of atherosclerosis in ApoE-/- mice were established by high-fat feeding, where miR-208 expression was determined. Then atherosclerotic plaque tissues were isolated from the model mice. Loss- and gain-function assays were performed on trypsinized vascular smooth muscle cells (VSMCs) to test the in vitro effect of CHOP in controlling the tribbles homologue 3 (TRIB3)/microRNA-208 (miR-208)/tissue inhibitor of metalloproteinases-3 (TIMP3) axis in atherosclerosis by determining cell proliferation and migration as well as blood lipid levels. Moreover, expression of α-smooth muscle actin (α-SMA) and type I collagen expression was determined using immunofluorescence staining to assess plaque stability in mice. RESULTS miR-208 expression was elevated in atherosclerosis samples and miR-208 overexpression promoted proliferation and migration of VSMCs but diminished plaque stability in mice. TIMP3 was targeted by miR-208, which could be abrogated by upregulation of TIMP3. In addition, CHOP increased TRIB3 expression to upregulate miR-208 and to downregulate TIMP3, which potentiated VSMC proliferation and migration in vitro and in vivo. CONCLUSION Taken together, inhibition of CHOP may inhibit the proliferation and migration of VSMCs as well as reduce the levels of TC, TG, and LDL-C but increase the level of HDL-C through the TRIB3/miR-208/TIMP3 axis, thereby inhibiting the progression of atherosclerosis.
Collapse
Affiliation(s)
- Rui Chen
- Department of Physiology, College of Basic Medical Sciences, Jilin University, No. 126, Xinmin Street, Changchun, 130021, Jilin Province, People's Republic of China
| | - Yan Zhang
- Department of Anesthesiology, The Third Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Chunyan Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, No. 126, Xinmin Street, Changchun, 130021, Jilin Province, People's Republic of China.
| |
Collapse
|
3
|
The novel histone deacetylase inhibitor pracinostat suppresses the malignant phenotype in human glioma. Mol Biol Rep 2022; 49:7507-7519. [PMID: 35622308 DOI: 10.1007/s11033-022-07559-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/04/2022] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Glioma is the most common malignant brain tumor in adults. The effects of conventional treatment regimens are still limited to prolonging the survival of patients. Histone deacetylases (HDACs) are potential targets for tumor treatment. Pracinostat is a new type of HDAC inhibitor (HDACi) that has a significant antitumor effect on a variety of tumors. Thus, we aim to investigate the role of pracinostat in human glioma and explored its underlying mechanism. METHODS Cell viability, proliferation and apoptosis of human glioma cell lines were measured by Cell Counting kit 8 and flow cytometry. Pathway verification and protein interaction were determined by quantitative real-time polymerase chain reaction, Western blotting and immunofluorescence staining. Transwell technology was used to assess the migration and invasion of cells. Clinical significance of TIMP3, MMP9 and MMP2 in glioma was analyzed through The Cancer Genome Atlas (TCGA) database and the Genotype-Tissue Expression (GTEx) database. RESULTS Functionally, pracinostat not only inhibited proliferation and induced apoptosis but also inhibited migration and invasion in human glioma cell lines. Mechanistically, pracinostat increased the expression of TIMP3 and decreased the expression of MMP2, MMP9 and VEGF in human glioma cells in vitro and in vivo. In addition, pracinostat inhibited both the PI3K/Akt signaling pathway and the STAT3 pathway. CONCLUSIONS Our results strongly support the potential clinical use of pracinostat as a novel therapy for human glioma in the near future.
Collapse
|
4
|
Yan Y, Xu Y, Ni G, Wang S, Li X, Gao J, Zhang H. MicroRNA-221 promotes proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) by targeting tissue inhibitor of metalloproteinases-3 (TIMP3). Cardiovasc Diagn Ther 2020; 10:646-657. [PMID: 32968621 PMCID: PMC7487395 DOI: 10.21037/cdt-20-328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/09/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Aberrant vascular smooth muscle cell (VSMC) proliferation and migration play an important role in the development of cardiovascular diseases including pulmonary arterial hypertension (PAH). MicroRNAs (miRNAs, miRs) have been considered to be implicated in the progression of PAH pathogenesis. In this study, we aim to clarify the role of miR-221 on proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) and identify the target genes involved in this biological process. METHODS PASMCs were isolated from the pulmonary arteries of male Sprague-Dawley (SD) rats. Cell proliferation of PASMCs was detected by 5-ethynyl-2'-deoxyuridine (EdU) assay. Cell migration was determined by a scratch wound assay. Quantitative real-time PCR was used to determine the expression of miR-221 while western blot analysis was used to determine the expression of TIMP3. Luciferase assay was used to confirm that TIMP3 was a direct target gene of miR-221. Monocrotaline (MCT) induced-PAH rat model was established and miR-221 and TIMP3 levels were checked in lung tissue and PASMCs from PAH rats. RESULTS miR-221 was able to promote the proliferation and migration PASMCs. TIMP3 were negatively regulated by miR-221 at the protein level in PASMCs. In addition, TIMP3 was identified to be a direct target gene of miR-221 in PASMCs based on luciferase assays. TIMP3 knockdown abolished the inhibitory effect of miR-221 inhibitor on PASMCs proliferation and migration, suggesting TIMP3 mediated the effects of miR-221 in PASMCs. Finally, we found that miR-221 was increased while TIMP3 was down-regulated in PASMCs in MCT-treated rats. CONCLUSIONS In conclusion, miR-221 promotes PASMCs proliferation and migration by targeting TIMP3. MiR-221 and TIMP3 could be potential therapeutic targets for the treatment of PAH.
Collapse
Affiliation(s)
- Yan Yan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Gehui Ni
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Siqi Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Juan Gao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Haifeng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Martinez VG, Pankova V, Krasny L, Singh T, Makris S, White IJ, Benjamin AC, Dertschnig S, Horsnell HL, Kriston-Vizi J, Burden JJ, Huang PH, Tape CJ, Acton SE. Fibroblastic Reticular Cells Control Conduit Matrix Deposition during Lymph Node Expansion. Cell Rep 2019; 29:2810-2822.e5. [PMID: 31775047 PMCID: PMC6899512 DOI: 10.1016/j.celrep.2019.10.103] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 10/09/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
Lymph nodes (LNs) act as filters, constantly sampling peripheral cues. This is facilitated by the conduit network, a tubular structure of aligned extracellular matrix (ECM) fibrils ensheathed by fibroblastic reticular cells (FRCs). LNs undergo rapid 3- to 5-fold expansion during adaptive immune responses, but these ECM-rich structures are not permanently damaged. Whether conduit flow or filtering function is affected during LN expansion is unknown. Here, we show that conduits are partially disrupted during acute LN expansion, but FRC-FRC contacts remain connected. We reveal that polarized FRCs deposit ECM basolaterally using LL5-β and that ECM production is regulated at transcriptional and secretory levels by the C-type lectin CLEC-2, expressed by dendritic cells. Inflamed LNs maintain conduit size exclusion, and flow is disrupted but persists, indicating the robustness of this structure despite rapid tissue expansion. We show how dynamic communication between peripheral tissues and LNs provides a mechanism to prevent inflammation-induced fibrosis in lymphoid tissue.
Collapse
Affiliation(s)
- Victor G Martinez
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Valeriya Pankova
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Lukas Krasny
- Division of Molecular Pathology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Tanya Singh
- Bioinformatics Image Core, MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Spyridon Makris
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Ian J White
- Electron Microscopy Facility, MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Agnesska C Benjamin
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Simone Dertschnig
- UCL Institute of Immunity and Transplantation, University College London, London NW3 2PF, UK
| | - Harry L Horsnell
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Janos Kriston-Vizi
- Bioinformatics Image Core, MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Jemima J Burden
- Electron Microscopy Facility, MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Paul H Huang
- Division of Molecular Pathology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Christopher J Tape
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Sophie E Acton
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
6
|
Matrix Metalloproteinase in Abdominal Aortic Aneurysm and Aortic Dissection. Pharmaceuticals (Basel) 2019; 12:ph12030118. [PMID: 31390798 PMCID: PMC6789891 DOI: 10.3390/ph12030118] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/25/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
Abdominal Aortic Aneurysm (AAA) affects 4–5% of men over 65, and Aortic Dissection (AD) is a life-threatening aortic pathology associated with high morbidity and mortality. Initiators of AAA and AD include smoking and arterial hypertension, whilst key pathophysiological features of AAA and AD include chronic inflammation, hypoxia, and large modifications to the extra cellular matrix (ECM). As it stands, only surgical methods are available for preventing aortic rupture in patients, which often presents difficulties for recovery. No pharmacological treatment is available, as such researchers are attempting to understand the cellular and molecular pathophysiology of AAA and AD. Upregulation of matrix metalloproteinase (MMPs), particularly MMP-2 and MMP-9, has been identified as a key event occurring during aneurysmal growth. As such, several animal models of AAA and AD have been used to investigate the therapeutic potential of suppressing MMP-2 and MMP-9 activity as well as modulating the activity of other MMPs, and TIMPs involved in the pathology. Whilst several studies have offered promising results, targeted delivery of MMP inhibition still needs to be developed in order to avoid surgery in high risk patients.
Collapse
|