1
|
Bae S, Yang A, Kim J, Lee HJ, Park HK. Identification of a novel KAT6A variant in an infant presenting with facial dysmorphism and developmental delay: a case report and literature review. BMC Med Genomics 2021; 14:297. [PMID: 34930245 PMCID: PMC8686292 DOI: 10.1186/s12920-021-01148-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 12/13/2021] [Indexed: 11/27/2022] Open
Abstract
Background Arboleda-Tham syndrome (ARTHS), caused by a pathogenic variant of KAT6A, is an autosomal dominant inherited genetic disorder characterized by various degrees of developmental delay, dysmorphic facial appearance, cardiac anomalies, and gastrointestinal problems.
Case presentation A baby presented multiple facial deformities including a high arched and cleft palate, with philtral ridge and vermilion indentation, a prominent nasal bridge, a thin upper lip, low-set ears, an epicanthal fold, and cardiac malformations. Whole exome sequencing (WES) revealed a heterozygous nonsense mutation in exon 8 of the KAT6A gene (c.1312C>T, p.[Arg438*]) at 2 months of age. After a diagnosis of ARTHS, an expressive language delay was observed during serial assessments of developmental milestones. Conclusions In this study, we describe a case with a novel KAT6A variant first identified in Korea. This case broadens the scope of clinical features of ARTHS and emphasizes that WES is necessary for early diagnosis in patients with dysmorphic facial appearances, developmental delay, and other congenital abnormalities. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-021-01148-x.
Collapse
Affiliation(s)
- Soyoung Bae
- Department of Pediatrics, Hanyang University Medical Center, Hanyang University College of Medicine, 222-1, Wangshimri-ro, Sungdong-gu, Seoul, 04763, Republic of Korea
| | - Aram Yang
- Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jinsup Kim
- Department of Pediatrics, Hanyang University Medical Center, Hanyang University College of Medicine, 222-1, Wangshimri-ro, Sungdong-gu, Seoul, 04763, Republic of Korea.
| | - Hyun Ju Lee
- Department of Pediatrics, Hanyang University Medical Center, Hanyang University College of Medicine, 222-1, Wangshimri-ro, Sungdong-gu, Seoul, 04763, Republic of Korea
| | - Hyun Kyung Park
- Department of Pediatrics, Hanyang University Medical Center, Hanyang University College of Medicine, 222-1, Wangshimri-ro, Sungdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
2
|
Bu H, Sun G, Zhu Y, Yang Y, Tan Z, Zhao T, Hu S. The M310T mutation in the GATA4 gene is a novel pathogenic target of the familial atrial septal defect. BMC Cardiovasc Disord 2021; 21:12. [PMID: 33413087 PMCID: PMC7788758 DOI: 10.1186/s12872-020-01822-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although most cases of atrial septal defect (ASD) are sporadic, familial cases have been reported, which may be caused by mutation of transcription factor GATA binding protein 4 (GATA4). Herein we combined whole-exome sequencing and bioinformatics strategies to identify a novel mutation in GATA4 accounting for the etiology in a Chinese family with ASD. METHODS We identified kindred spanning 3 generations in which 3 of 12 (25.0%) individuals had ASD. Punctilious records for the subjects included complete physical examination, transthoracic echocardiography, electrocardiograph and surgical confirming. Whole-exome capture and high-throughput sequencing were performed on the proband III.1. Sanger sequencing was used to validate the candidate variants, and segregation analyses were performed in the family members. RESULTS Direct sequencing of GATA4 from the genomic DNA of family members identified a T-to-C transition at nucleotide 929 in exon 5 that predicted a methionine to threonine substitution at codon 310 (M310T) in the nuclear localization signal (NLS) region. Two affected members (II.2 and III.3) and the proband (III.1) who was recognized as a carrier exhibited this mutation, whereas the other unaffected family members or control individuals did not. More importantly, the mutation GATA4 (c.T929C: p.M310T) has not been reported previously in either familial or sporadic cases of congenital heart defects (CHD). CONCLUSIONS We identified for the first time a novel M310T mutation in the GATA4 gene that is located in the NLS region and leads to family ASD with arrhythmias. However, the mechanism by which this pathogenic mutation contributes to the development of heart defect and tachyarrhythmias remains to be ascertained.
Collapse
Affiliation(s)
- Haisong Bu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Central Road, Changsha, 410011, Hunan, People's Republic of China.,Central South University Center for Clinical Gene Diagnosis and Treatment, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55902, USA
| | - Guowen Sun
- Department of Cardiothoracic Surgery, Chenzhou No. 1 People's Hospital, Chenzhou, 423000, Hunan, People's Republic of China
| | - Yun Zhu
- Department of Cardiothoracic Surgery, Chenzhou No. 1 People's Hospital, Chenzhou, 423000, Hunan, People's Republic of China
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Central Road, Changsha, 410011, Hunan, People's Republic of China.,Central South University Center for Clinical Gene Diagnosis and Treatment, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Zhiping Tan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Central Road, Changsha, 410011, Hunan, People's Republic of China.,Central South University Center for Clinical Gene Diagnosis and Treatment, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Tianli Zhao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Central Road, Changsha, 410011, Hunan, People's Republic of China.,Central South University Center for Clinical Gene Diagnosis and Treatment, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Shijun Hu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Central Road, Changsha, 410011, Hunan, People's Republic of China. .,Central South University Center for Clinical Gene Diagnosis and Treatment, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China. .,Department of Cardiovascular Surgery, The German Heart Centre, 80636, Munich, Germany.
| |
Collapse
|
3
|
Bu H, Gong X, Zhao T. Image diagnosis: Eisenmenger's syndrome in patients with simple congenital heart disease. BMC Cardiovasc Disord 2020; 20:194. [PMID: 32326907 PMCID: PMC7178603 DOI: 10.1186/s12872-020-01489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/16/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Early identification of congenital heart disease (CHD) allows detection of the pulmonary arteriopathy in an early stage, and timely shunt closure can permanently reverse pulmonary arterial hypertension (PAH). However, surgical correction is not recommended in patients with irreversible PAH. Herein we report our experience about Eisenmenger's syndrome in simple CHD. CASE PRESENTATION From January 2017 to November 2018, a total of 8 CHD patients (3 ventricular septal defects (VSD), 2 atrial septal defects (ASD), and 3 patent ductus arteriosus (PDA), median age, 15.5 years [range, 3-18 years]) with PAH were detected by chest X-ray, electrocardiogram, transthoracic echocardiography (TTE), computed tomographic angiography (CTA) and cardiac catheterization. The median defect diameter, pulmonary artery pressure (PAP), pulmonary vascular resistance (PVR) were 16.5 mm (range, 3-30 mm), 75 mmHg (range, 60-86 mmHg), and 16 Woods units (range, 12-19 Woods units), respectively. Here, we report the representative cases of three types of simple CHD with irreversible PAH. The surgical correction was not performed in all patients who had fixed PAH and were referred to medical treatment. CONCLUSIONS PAH in CHD can be reversed by early shunt closure, but this potential is lost beyond a certain point of no return. This article highlights the essence of enhancing the level of healthcare and services in Chinese rural areas. Failure to accurately and timely assess PAH will delay effective treatment past optimal treatment time, and even lead to death.
Collapse
Affiliation(s)
- Haisong Bu
- The Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Central Road, Changsha, Hunan 410011 People’s Republic of China
| | - Xueyang Gong
- The Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Central Road, Changsha, Hunan 410011 People’s Republic of China
| | - Tianli Zhao
- The Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Central Road, Changsha, Hunan 410011 People’s Republic of China
| |
Collapse
|
4
|
Xing J, Zhao X, Li X, Wang Y, Li J, Hou R, Niu X, Yin G, Li X, Zhang K. Variation at ACOT12 and CT62 locus represents susceptibility to psoriasis in Han population. Mol Genet Genomic Med 2019; 8:e1098. [PMID: 31858748 PMCID: PMC7005626 DOI: 10.1002/mgg3.1098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023] Open
Abstract
Background Psoriasis is a chronic inflammatory disorder of the skin, and genetic factors are reported to be involved in the disease pathogenesis. Many studies have named psoriasis candidate genes. Objective In this study, we determined the mutation frequency of 7 variable genes in 1,027 psoriatic patients and investigated its possible mechanism associated with psoriasis. Method A total of 7 variable genes from 1,027 psoriatic patients were amplified and sequenced using the Sanger method. The mutation frequency was compared to that of non‐psoriatic individuals in Asia using information from databases. Results Among the 7 investigated genes, the mutation frequency of ACOT12 (c.80A>G, 9.98% vs. 5.85%, p < .05) and CT62 (c.476C>T,15.8% vs. 9.93%, p < .05) was found to be significantly higher than among non‐psoriatic Asian individuals. The mutation frequencies of CASZ1(c.599T>G), SPRED1(c.155A>G), and ACOT12 (c.80A>G) differed significantly between the groups organized by medical history, PASI, and family history. SPRED1 gene variants (17.25% vs. 7.78%, p < .01) showed a stronger association with the family history group at the onset of psoriasis than with the no family history group. Conclusions Our results provide a comprehensive correlation analysis of susceptibility genes in psoriasis patients. Clinical characteristics of patients play important roles in the development of psoriatic skin.
Collapse
Affiliation(s)
- Jianxiao Xing
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xincheng Zhao
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaofang Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ying Wang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuping Niu
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guohua Yin
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinhua Li
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cells for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|