1
|
Boyko AI, Karlina IS, Zavileyskiy LG, Aleshin VA, Artiukhov AV, Kaehne T, Ksenofontov AL, Ryabov SI, Graf AV, Tramonti A, Bunik VI. Delayed Impact of 2-Oxoadipate Dehydrogenase Inhibition on the Rat Brain Metabolism Is Linked to Protein Glutarylation. Front Med (Lausanne) 2022; 9:896263. [PMID: 35721081 PMCID: PMC9198357 DOI: 10.3389/fmed.2022.896263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/28/2022] [Indexed: 12/19/2022] Open
Abstract
Background The DHTKD1-encoded 2-oxoadipate dehydrogenase (OADH) oxidizes 2-oxoadipate—a common intermediate of the lysine and tryptophan catabolism. The mostly low and cell-specific flux through these pathways, and similar activities of OADH and ubiquitously expressed 2-oxoglutarate dehydrogenase (OGDH), agree with often asymptomatic phenotypes of heterozygous mutations in the DHTKD1 gene. Nevertheless, OADH/DHTKD1 are linked to impaired insulin sensitivity, cardiovascular disease risks, and Charcot-Marie-Tooth neuropathy. We hypothesize that systemic significance of OADH relies on its generation of glutaryl residues for protein glutarylation. Using pharmacological inhibition of OADH and the animal model of spinal cord injury (SCI), we explore this hypothesis. Methods The weight-drop model of SCI, a single intranasal administration of an OADH-directed inhibitor trimethyl adipoyl phosphonate (TMAP), and quantification of the associated metabolic changes in the rat brain employ established methods. Results The TMAP-induced metabolic changes in the brain of the control, laminectomized (LE) and SCI rats are long-term and (patho)physiology-dependent. Increased glutarylation of the brain proteins, proportional to OADH expression in the control and LE rats, represents a long-term consequence of the OADH inhibition. The proportionality suggests autoglutarylation of OADH, supported by our mass-spectrometric identification of glutarylated K155 and K818 in recombinant human OADH. In SCI rats, TMAP increases glutarylation of the brain proteins more than OADH expression, inducing a strong perturbation in the brain glutathione metabolism. The redox metabolism is not perturbed by TMAP in LE animals, where the inhibition of OADH increases expression of deglutarylase sirtuin 5. The results reveal the glutarylation-imposed control of the brain glutathione metabolism. Glutarylation of the ODP2 subunit of pyruvate dehydrogenase complex at K451 is detected in the rat brain, linking the OADH function to the brain glucose oxidation essential for the redox state. Short-term inhibition of OADH by TMAP administration manifests in increased levels of tryptophan and decreased levels of sirtuins 5 and 3 in the brain. Conclusion Pharmacological inhibition of OADH affects acylation system of the brain, causing long-term, (patho)physiology-dependent changes in the expression of OADH and sirtuin 5, protein glutarylation and glutathione metabolism. The identified glutarylation of ODP2 subunit of pyruvate dehydrogenase complex provides a molecular mechanism of the OADH association with diabetes.
Collapse
Affiliation(s)
- Alexandra I Boyko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Irina S Karlina
- N.V. Sklifosovsky Institute of Clinical Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Lev G Zavileyskiy
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Vasily A Aleshin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Department of Biological Chemistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Artem V Artiukhov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Department of Biological Chemistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Thilo Kaehne
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Alexander L Ksenofontov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey I Ryabov
- Russian Cardiology Research and Production Complex, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia V Graf
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Nano-, Bio-, Informational, Cognitive and Socio-Humanistic Sciences and Technologies, Moscow Institute of Physics and Technology, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Angela Tramonti
- Institute of Molecular Biology and Pathology, Council of National Research, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University, Rome, Italy
| | - Victoria I Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Department of Biological Chemistry, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
2
|
Osmanovic A, Gogol I, Martens H, Widjaja M, Müller K, Schreiber-Katz O, Feuerhake F, Langhans CD, Schmidt G, Andersen PM, Ludolph AC, Weishaupt JH, Brand F, Petri S, Weber RG. Heterozygous DHTKD1 Variants in Two European Cohorts of Amyotrophic Lateral Sclerosis Patients. Genes (Basel) 2021; 13:84. [PMID: 35052424 PMCID: PMC8774751 DOI: 10.3390/genes13010084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 01/26/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive upper and lower motor neuron (LMN) loss. As ALS and other neurodegenerative diseases share genetic risk factors, we performed whole-exome sequencing in ALS patients focusing our analysis on genes implicated in neurodegeneration. Thus, variants in the DHTKD1 gene encoding dehydrogenase E1 and transketolase domain containing 1 previously linked to 2-aminoadipic and 2-oxoadipic aciduria, Charcot-Marie-Tooth (CMT) disease type 2, and spinal muscular atrophy (SMA) were identified. In two independent European ALS cohorts (n = 643 cases), 10 sporadic cases of 225 (4.4%) predominantly sporadic patients of cohort 1, and 12 familial ALS patients of 418 (2.9%) ALS families of cohort 2 harbored 14 different rare heterozygous DHTKD1 variants predicted to be deleterious. Four DHTKD1 variants were previously described pathogenic variants, seven were recurrent, and eight were located in the E1_dh dehydrogenase domain. Nonsense variants located in the E1_dh domain were significantly more prevalent in ALS patients versus controls. The phenotype of ALS patients carrying DHTKD1 variants partially overlapped with CMT and SMA by presence of sensory impairment and a higher frequency of LMN-predominant cases. Our results argue towards rare heterozygous DHTKD1 variants as potential contributors to ALS phenotype and, possibly, pathogenesis.
Collapse
Affiliation(s)
- Alma Osmanovic
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (A.O.); (I.G.); (H.M.); (M.W.); (G.S.); (F.B.)
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany;
- Essen Center for Rare Diseases (EZSE), University Hospital Essen, 45147 Essen, Germany
| | - Isabel Gogol
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (A.O.); (I.G.); (H.M.); (M.W.); (G.S.); (F.B.)
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany;
| | - Helge Martens
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (A.O.); (I.G.); (H.M.); (M.W.); (G.S.); (F.B.)
| | - Maylin Widjaja
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (A.O.); (I.G.); (H.M.); (M.W.); (G.S.); (F.B.)
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany;
| | - Kathrin Müller
- Department of Neurology, University of Ulm, 89070 Ulm, Germany; (K.M.); (A.C.L.); (J.H.W.)
| | | | - Friedrich Feuerhake
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany;
| | - Claus-Dieter Langhans
- GCMS Laboratory, Dietmar Hopp Metabolic Center, University Children’s Hospital, 69120 Heidelberg, Germany;
| | - Gunnar Schmidt
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (A.O.); (I.G.); (H.M.); (M.W.); (G.S.); (F.B.)
| | - Peter M. Andersen
- Department of Clinical Sciences, Neurosciences, Umeå University, 90185 Umeå, Sweden;
| | - Albert C. Ludolph
- Department of Neurology, University of Ulm, 89070 Ulm, Germany; (K.M.); (A.C.L.); (J.H.W.)
| | - Jochen H. Weishaupt
- Department of Neurology, University of Ulm, 89070 Ulm, Germany; (K.M.); (A.C.L.); (J.H.W.)
- Division for Neurodegenerative Diseases, Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Frank Brand
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (A.O.); (I.G.); (H.M.); (M.W.); (G.S.); (F.B.)
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany;
| | - Ruthild G. Weber
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (A.O.); (I.G.); (H.M.); (M.W.); (G.S.); (F.B.)
| |
Collapse
|
3
|
Schiavon CR, Shadel GS, Manor U. Impaired Mitochondrial Mobility in Charcot-Marie-Tooth Disease. Front Cell Dev Biol 2021; 9:624823. [PMID: 33598463 PMCID: PMC7882694 DOI: 10.3389/fcell.2021.624823] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a progressive, peripheral neuropathy and the most commonly inherited neurological disorder. Clinical manifestations of CMT mutations are typically limited to peripheral neurons, the longest cells in the body. Currently, mutations in at least 80 different genes are associated with CMT and new mutations are regularly being discovered. A large portion of the proteins mutated in axonal CMT have documented roles in mitochondrial mobility, suggesting that organelle trafficking defects may be a common underlying disease mechanism. This review will focus on the potential role of altered mitochondrial mobility in the pathogenesis of axonal CMT, highlighting the conceptional challenges and potential experimental and therapeutic opportunities presented by this "impaired mobility" model of the disease.
Collapse
Affiliation(s)
- Cara R. Schiavon
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Gerald S. Shadel
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
4
|
Liang Y, Liu J, Cheng D, Wu Y, Mo L, Huang W. Recurrent episodes of reversible posterior leukoencephalopathy in three Chinese families with GJB1 mutations in X-linked Charcot-Marie-tooth type 1 disease: cases report. BMC Neurol 2019; 19:325. [PMID: 31842800 PMCID: PMC6912941 DOI: 10.1186/s12883-019-1563-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/09/2019] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The X-linked form of Charcot-Marie-Tooth disease type 1 (CMTX1) is an inherited peripheral neuropathy that arises in patients with mutations in the gap-junction beta-1 gene (GJB1). CASE PRESENTATION Three young male patients from Southern China with pes cavus experienced multiple episodes of transient central nervous system (CNS) dysfunction. Three patients all had reversible posterior leukoencephalopathy as detected by brain diffusion-weighted magnetic resonance imaging (MRI-DWI). Nerve conduction velocity (NCV) showed sensorimotor polyneuropathy with mixed demyelinating and axonal features. Genetic testing indicated a c.425G > A (p.Arg142Glu) or c.563 C > T (p.Thr188Ile) or c.103G > C (p.Val35Leu) mutation in GJB1. The unique feature of this report is the identification of two novel mutations: c.563 C > T and sc.103G > C of the GJB1 gene detected in two families respectively. Another unique feature is that peripheral neuropathy symptoms in the three patients were insidious and found at the onset of CNS symptoms. CONCLUSIONS Posterior leukoencephalopathy is involved in CMTX1 patients. The white matter changes in MRI of CMTX1 patients are reversible and recover later than CNS symptoms.
Collapse
Affiliation(s)
- Youlong Liang
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, #6 Shuangyong Road, Nanning, Guangxi, People's Republic of China, 530021
| | - Jingli Liu
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, #6 Shuangyong Road, Nanning, Guangxi, People's Republic of China, 530021
| | - Daobin Cheng
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, #6 Shuangyong Road, Nanning, Guangxi, People's Republic of China, 530021
| | - Yu Wu
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, #6 Shuangyong Road, Nanning, Guangxi, People's Republic of China, 530021
| | - Liuhong Mo
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, #6 Shuangyong Road, Nanning, Guangxi, People's Republic of China, 530021
| | - Wen Huang
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, #6 Shuangyong Road, Nanning, Guangxi, People's Republic of China, 530021.
| |
Collapse
|