1
|
Im H, Song Y, Kim JK, Park DK, Kim DS, Kim H, Shin JO. Molecular Regulation of Palatogenesis and Clefting: An Integrative Analysis of Genetic, Epigenetic Networks, and Environmental Interactions. Int J Mol Sci 2025; 26:1382. [PMID: 39941150 PMCID: PMC11818578 DOI: 10.3390/ijms26031382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Palatogenesis is a complex developmental process requiring temporospatially coordinated cellular and molecular events. The following review focuses on genetic, epigenetic, and environmental aspects directing palatal formation and their implication in orofacial clefting genesis. Essential for palatal shelf development and elevation (TGF-β, BMP, FGF, and WNT), the subsequent processes of fusion (SHH) and proliferation, migration, differentiation, and apoptosis of neural crest-derived cells are controlled through signaling pathways. Interruptions to these processes may result in the birth defect cleft lip and/or palate (CL/P), which happens in approximately 1 in every 700 live births worldwide. Recent progress has emphasized epigenetic regulations via the class of non-coding RNAs with microRNAs based on critically important biological processes, such as proliferation, apoptosis, and epithelial-mesenchymal transition. These environmental risks (maternal smoking, alcohol, retinoic acid, and folate deficiency) interact with genetic and epigenetic factors during palatogenesis, while teratogens like dexamethasone and TCDD inhibit palatal fusion. In orofacial cleft, genetic, epigenetic, and environmental impact on the complex epidemiology. This is an extensive review, offering current perspectives on gene-environment interactions, as well as non-coding RNAs, in palatogenesis and emphasizing open questions regarding these interactions in palatal development.
Collapse
Affiliation(s)
- Hyuna Im
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea (D.-K.P.); (D.-S.K.)
| | - Yujeong Song
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea (D.-K.P.); (D.-S.K.)
| | - Jae Kyeom Kim
- Department of Food and Biotechnology, Korea University, Sejong 339770, Republic of Korea
- Department of Health Behavior and Nutrition Sciences, University of Delaware, Newark, DE 19711, USA
| | - Dae-Kyoon Park
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea (D.-K.P.); (D.-S.K.)
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea (D.-K.P.); (D.-S.K.)
| | - Hankyu Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea (D.-K.P.); (D.-S.K.)
| | - Jeong-Oh Shin
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea (D.-K.P.); (D.-S.K.)
| |
Collapse
|
2
|
Duolikun Wufuer, Dilibaier Yimingjiang, Kamilijiang Maimaitiming, Li J, Wulifan Tuoleheng. Correlation between FOXN3-SIN3A complex expression in peripheral blood and non-syndromic cleft lip and palate in Xinjiang. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2024; 42:313-318. [PMID: 39049650 PMCID: PMC11190867 DOI: 10.7518/hxkq.2024.2023340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/12/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVES This work aimed to study the correlation between FOXN3-SIN3A complex expression and non-syndromic oral clefts (NSOC) in Xinjiang. METHODS In this study, 60 patients with NSOC attending the People's Hospital of Xinjiang Uygur Autonomous Region were recruited into the case group, including 30 cleft lip with or without cleft palate (NSCL/P), 30 cleft palate only (CPO), and 30 healthy children in the control group. The expression levels of FOXN3, SIN3A, and NEAT1 in peripheral blood of each group were detected by high-throughput second-generation sequencing technology and quantitative reverse transcription polymerase chain reaction (RT-qPCR). Receiver operating characteristic (ROC) curve and area under the curve (AUC) were used to analyze the diagnostic efficiency of NSOC. RESULTS The comparison of the NSOC and control groups showed that FOXN3, SIN3A, and NEAT1 genes increased compared with the control group. The differences were all statistically significant (P<0.05). The AUCs of FOXN3, SIN3A, and NEAT1 in the NSCL/P group were 0.933 [95%CI=(0.864, 1.000)], 0.822 [(95%CI=(0.713, 0.932)], and 1.000[95%CI= (1.000, 1.000)], respectively. The AUCs of FOX-N3, SIN3A, and NEAT1 in the CPO group were 0.891 [95%CI=(0.806, 0.976)], 0.688 [95%CI=(0.552, 0.824)], and 1.000 [95%CI=(1.000, 1.000)], respectively. CONCLUSIONS The results showed a correlation between the rising gene expression of FOXN3, SIN3A, and NEAT1 in peripheral blood and the occurrence of NSOC in Xinjiang. This work provides a theoretical basis for further study of the FOXN3-SIN3A complex as biomarkers to facilitate the early screening, disease prediction, and early prevention of NSOC.
Collapse
Affiliation(s)
- Duolikun Wufuer
- Dept. of Maxillofacial Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830000, China
| | - Dilibaier Yimingjiang
- Dept. of Maxillofacial Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830000, China
| | - Kamilijiang Maimaitiming
- Dept. of Maxillofacial Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830000, China
| | - Jun Li
- Dept. of Maxillofacial Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830000, China
| | - Wulifan Tuoleheng
- Dept. of Maxillofacial Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830000, China
| |
Collapse
|
3
|
Wu C, Liu H, Zhan Z, Zhang X, Zhang M, You J, Ma J. Unveiling dysregulated lncRNAs and networks in non-syndromic cleft lip with or without cleft palate pathogenesis. Sci Rep 2024; 14:1047. [PMID: 38200098 PMCID: PMC10781966 DOI: 10.1038/s41598-024-51747-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/09/2024] [Indexed: 01/12/2024] Open
Abstract
Non-syndromic cleft lip with or without cleft palate (NSCL/P) is a common congenital facial malformation with a complex, incompletely understood origin. Long noncoding RNAs (lncRNAs) have emerged as pivotal regulators of gene expression, potentially shedding light on NSCL/P's etiology. This study aimed to identify critical lncRNAs and construct regulatory networks to unveil NSCL/P's underlying molecular mechanisms. Integrating gene expression profiles from the Gene Expression Omnibus (GEO) database, we pinpointed 30 dysregulated NSCL/P-associated lncRNAs. Subsequent analyses enabled the creation of competing endogenous RNA (ceRNA) networks, lncRNA-RNA binding protein (RBP) interaction networks, and lncRNA cis and trans regulation networks. RT-qPCR was used to examine the regulatory networks of lncRNA in vivo and in vitro. Furthermore, protein levels of lncRNA target genes were validated in human NSCL/P tissue samples and murine palatal shelves. Consequently, two lncRNAs and three mRNAs: FENDRR (log2FC = - 0.671, P = 0.040), TPT1-AS1 (log2FC = 0.854, P = 0.003), EIF3H (log2FC = - 1.081, P = 0.041), RBBP6 (log2FC = 0.914, P = 0.037), and SRSF1 (log2FC = 0.763, P = 0.026) emerged as potential contributors to NSCL/P pathogenesis. Functional enrichment analyses illuminated the biological functions and pathways associated with these lncRNA-related networks in NSCL/P. In summary, this study comprehensively delineates the dysregulated transcriptional landscape, identifies associated lncRNAs, and reveals pivotal sub-networks relevant to NSCL/P development, aiding our understanding of its molecular progression and setting the stage for further exploration of lncRNA and mRNA regulation in NSCL/P.
Collapse
Affiliation(s)
- Caihong Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Stomatological Hospital affiliated Suzhou Vocational Health College, Suzhou, China
| | - Haojie Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Zhuorong Zhan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Xinyu Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Mengnan Zhang
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jiawen You
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Seelan RS, Greene RM, Pisano MM. Role of lncRNAs and circRNAs in Orofacial Clefts. Microrna 2023; 12:171-176. [PMID: 38009000 DOI: 10.2174/2211536612666230524153442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/27/2023] [Accepted: 04/25/2023] [Indexed: 11/28/2023]
Abstract
Different modes of gene regulation, such as histone modification, transcription factor binding, DNA methylation, and microRNA (miRNA) expression, are critical for the spatiotemporal expression of genes in developing orofacial tissues. Aberrant regulation in any of these modes may contribute to orofacial defects. Noncoding RNAs (ncRNAs), such as long ncRNAs (lncRNAs) and circular RNAs (circRNAs), have been shown to alter miRNA expression, and are thus emerging as novel contributors to gene regulation. Some of these appear to function as 'miRNA sponges', thereby diminishing the availability of these miRNAs to inhibit the expression of target genes. Such ncRNAs are also termed competitive endogenous RNAs (ceRNAs). Here, we examine emerging data that shed light on how lncRNAs and circRNAs may alter miRNA regulation, thus affecting orofacial development and potentially contributing to orofacial clefting.
Collapse
Affiliation(s)
- Ratnam S Seelan
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Robert M Greene
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - M Michele Pisano
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| |
Collapse
|
5
|
Alade A, Awotoye W, Butali A. Genetic and epigenetic studies in non-syndromic oral clefts. Oral Dis 2022; 28:1339-1350. [PMID: 35122708 DOI: 10.1111/odi.14146] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 11/28/2022]
Abstract
The etiology of non-syndromic oral clefts (NSOFC) is complex with genetics, genomics, epigenetics, and stochastics factors playing a role. Several approaches have been applied to understand the etiology of non-syndromic oral clefts. These include linkage, candidate gene association studies, genome-wide association studies, whole-genome sequencing, copy number variations, and epigenetics. In this review, we shared these approaches, genes, and loci reported in some studies.
Collapse
Affiliation(s)
- Azeez Alade
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, Iowa, USA
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, Iowa, USA
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Waheed Awotoye
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, Iowa, USA
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, Iowa, USA
| | - Azeez Butali
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, Iowa, USA
- Iowa Institute for Oral Health Research, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
6
|
Chen S, Jia Z, Cai M, Ye M, Wu D, Wan T, Zhang B, Wu P, Xu Y, Guo Y, Tian C, Ma D, Ma J. SP1-Mediated Upregulation of Long Noncoding RNA ZFAS1 Involved in Non-syndromic Cleft Lip and Palate via Inactivating WNT/β-Catenin Signaling Pathway. Front Cell Dev Biol 2021; 9:662780. [PMID: 34268302 PMCID: PMC8275830 DOI: 10.3389/fcell.2021.662780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023] Open
Abstract
Non-syndromic cleft lip and palate (NSCLP) is one of the most common congenital malformations with multifactorial etiology. Although long non-coding RNAs (lncRNAs) have been implicated in the development of lip and palate, their roles in NSCLP are not fully elucidated. This study aimed to investigate how dysregulated lncRNAs contribute to NSCLP. Using lncRNA sequencing, bioinformatics analysis, and clinical tissue sample detection, we identified that lncRNA ZFAS1 was significantly upregulated in NSCLP. The upregulation of ZFAS1 mediated by SP1 transcription factor (SP1) inhibited expression levels of Wnt family member 4 (WNT4) through the binding with CCCTC-binding factor (CTCF), subsequently inactivating the WNT/β-catenin signaling pathway, which has been reported to play a significant role on the development of lip and palate. Moreover, in vitro, the overexpression of ZFAS1 inhibited cell proliferation and migration in human oral keratinocytes and human umbilical cord mesenchymal stem cells (HUC-MSCs) and also repressed chondrogenic differentiation of HUC-MSCs. In vivo, ZFAS1 suppressed cell proliferation and numbers of chondrocyte in the zebrafish ethmoid plate. In summary, these results indicated that ZFAS1 may be involved in NSCLP by affecting cell proliferation, migration, and chondrogenic differentiation through inactivating the WNT/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Shiyu Chen
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhonglin Jia
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ming Cai
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mujie Ye
- Children's Hospital of Fudan University, Shanghai, China
| | - Dandan Wu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Teng Wan
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bowen Zhang
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Peixuan Wu
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuexin Xu
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuntao Guo
- Medical Laboratory of Nantong ZhongKe, Nantong, China
| | - Chan Tian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Peking University, Beijing, China
| | - Duan Ma
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,School of Basic Medical Sciences, Fudan University, Shanghai, China.,Children's Hospital of Fudan University, Shanghai, China
| | - Jing Ma
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Garland MA, Sun B, Zhang S, Reynolds K, Ji Y, Zhou CJ. Role of epigenetics and miRNAs in orofacial clefts. Birth Defects Res 2020; 112:1635-1659. [PMID: 32926553 DOI: 10.1002/bdr2.1802] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/17/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
Orofacial clefts (OFCs) have multiple etiologies and likely result from an interplay between genetic and environmental factors. Within the last decade, studies have implicated specific epigenetic modifications and noncoding RNAs as additional facets of OFC etiology. Altered gene expression through DNA methylation and histone modification offer novel insights into how specific genes contribute to distinct OFC subtypes. Epigenetics research has also provided further evidence that cleft lip only (CLO) is a cleft subtype with distinct etiology. Polymorphisms or misexpression of genes encoding microRNAs, as well as their targets, contribute to OFC risk. The ability to experimentally manipulate epigenetic changes and noncoding RNAs in animal models, such as zebrafish, Xenopus, mice, and rats, has offered novel insights into the mechanisms of various OFC subtypes. Although much remains to be understood, recent advancements in our understanding of OFC etiology may advise future strategies of research and preventive care.
Collapse
Affiliation(s)
- Michael A Garland
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, California, USA
| | - Bo Sun
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, California, USA
| | - Shuwen Zhang
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, California, USA
| | - Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, California, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, California, USA
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, California, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, California, USA
| | - Chengji J Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, California, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, California, USA
| |
Collapse
|