1
|
Ouyang R, Ma Y, Jiang L, Zhang X, Liu X, Wang Y, Huang Y, Zhao Y, Jiang Y, Miao Y, Liu B. Cocatalysis of catalytic hairpin assembly and ternary heterojunction Bi 2S 3@MoS 2@Bi 2MoO 6 promotes ultra-sensitive electrochemical of detection MiRNA-21. Mikrochim Acta 2025; 192:115. [PMID: 39888428 DOI: 10.1007/s00604-025-06977-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/11/2025] [Indexed: 02/01/2025]
Abstract
Ternary heterojunction Bi2S3/MoS2/Bi2MoO6 was designed as a signal probe to develop a dual signal amplification strategy empowered electrochemical biosensor for sensitive miRNA-21 detection by combining with catalytic hairpin assembly (CHA). The combination of the Bi2S3/MoS2/Bi2MoO6 heterojunction as a tracer indication probe and the CHA amplification strategy not only took fully use of the highly dense nanowire interwoven structure and superior active region of the probe, but also endowed the ability to improve the molecular hybridization efficiency by collision, which significantly avoided the cumbersome chain design and greatly simplified the step-by-step construction of the electrode surface. Hairpin H1 was first added dropwise to the gold nanoparticle-decorated electrode surface, and then opened by the introduced miRNA-21 to initiate the specific hybridization. Once the H2-MB/Bi2S3/MoS2/Bi2MoO6 heterojunction was added, more sensitive and rapid detection of miRNA-21 would be achieved through the introduction of methylene blue since the cocatalysis of hairpin assembly and ternary heterojunction Bi2S3@MoS2@Bi2MoO6. Finally, the constructed biosensor demonstrated effective performance in the detection of miRNA-21 within the linear range of 1 fM to 100 pM with a detection limit of 0.31 fM. The satisfactory analysis of human blood samples further validated the preferable reliability and practicability of this new strategy for the ultrasensitive detection of miRNA.
Collapse
Affiliation(s)
- Ruizhuo Ouyang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yuanhui Ma
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lan Jiang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiaoqing Zhang
- Department of Pharmacy, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Xi Liu
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ying Wang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ying Huang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuefeng Zhao
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuqin Jiang
- Key Laboratory of Green Chemical Media and Reactions, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Ministry of Education, Henan Normal University, Xinxiang, China.
- Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Normal University, Xinxiang, 453007, China.
| | - Yuqing Miao
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Baolin Liu
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China.
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
2
|
Guevara-Villazón F, Pacheco-Tena C, Anchondo-López A, Ordoñez-Solorio LA, Contreras Martínez B, Muñoz-Cobos A, Luévano-González A, González-Chávez SA. Transcriptomic alterations in hypertrophy of the ligamentum flavum: interactions of Rho GTPases, RTK, PIK3, and FGF. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:1901-1910. [PMID: 37115284 DOI: 10.1007/s00586-023-07721-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/03/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023]
Abstract
PURPOSE To analyze the differential transcriptome expression in hypertrophic ligaments flavum (HLF) compared to normal ligaments. METHODS A case-control study was conducted that included 15 patients with hypertrophy of LF and 15 controls. Samples of LF were obtained through a lumbar laminectomy and analyzed by DNA microarrays and histology. The dysregulated biological processes, signaling pathways, and pathological markers in the HLF were identified using bioinformatics tools. RESULTS The HLF had notable histological alterations, including hyalinosis, leukocyte infiltration, and disarrangement of collagen fibers. Transcriptomic analysis showed that up-regulated genes were associated with the signaling pathways of Rho GTPases, receptor tyrosine kinases (RTK), fibroblast growth factors (FGF), WNT, vascular endothelial growth factor, phosphoinositide 3-kinase (PIK3), mitogen-activated protein kinases, and immune system. The genes PIK3R1, RHOA, RPS27A, CDC42, VAV1, and FGF5, 9, 18, and 19 were highlighted as crucial markers in HLF. The down-expressed genes in the HLF had associations with the metabolism of RNA and proteins. CONCLUSION Our results suggest that abnormal processes in hypertrophied LF are mediated by the interaction of the Rho GTPase, RTK, and PI3K pathways, which have not been previously described in the HLF, but for which there are currently therapeutic proposals. More studies are required to confirm the therapeutic potential of the pathways and mediators described in our results.
Collapse
Affiliation(s)
- Fernando Guevara-Villazón
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, 31125, Chihuahua, Chihuahua, México
- Neuroteam CUU, Hospital Ángeles Chihuahua, Chihuahua, México
| | - César Pacheco-Tena
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, 31125, Chihuahua, Chihuahua, México.
| | - Antonio Anchondo-López
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, 31125, Chihuahua, Chihuahua, México
| | | | | | | | - Arturo Luévano-González
- Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Susana Aideé González-Chávez
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, 31125, Chihuahua, Chihuahua, México.
| |
Collapse
|
3
|
Zhang B, Chen G, Chen X, Yang X, Fan T, Sun C, Chen Z. Integrating Bioinformatic Strategies with Real-World Data to Infer Distinctive Immunocyte Infiltration Landscape and Immunologically Relevant Transcriptome Fingerprints in Ossification of Ligamentum Flavum. J Inflamm Res 2021; 14:3665-3685. [PMID: 34354364 PMCID: PMC8331123 DOI: 10.2147/jir.s318009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/08/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose Ossification of the ligamentum flavum (OLF) is a multifactorial disease characterized by an insidious and debilitating process of abnormal bone formation in ligamentum tissues. However, its definite pathogenesis has not been fully elucidated. Potential links between the immune system and various forms of heterotopic ossification have been discussed for many years, whereas no research investigated the immune effects on the initiation and development of OLF. Therefore, we attempt to shed light on this issue. Methods A series of bioinformatic algorithms were integrated to evaluate the immune score and the immunocyte infiltration patterns between OLF and normal samples, screen OLF-related and immune-related differentially expressed genes (OIDEGs), and analyze their biological functions. Correlation analysis inferred OIDEGs-related differentially expressed lncRNAs (OIDELs) and infiltrating immune cells (OIICs) to construct an immunoregulatory network. Results Differential immune score and immune cell infiltration were determined between two groups, and 10 OIDEGs with diverse biological function annotations were identified and verified. A lncRNA-gene-immunocyte regulatory network further revealed 10 OIDEGs, 41 OIDELs and 7 OIICs that were highly correlated. Among them, CD1E and STAT3 were predicted as hub genes whether at the expression level or interaction level. cDCs emerged as having the most prominent differences and the highest degree of connectivity. FO393414.3, AC096734.1, LINC01137 and DLX6-AS1 with the greatest number of OIDEGs were thought to be more likely to participate in immunoregulation of OLF. Conclusion This is the first research to preliminarily elucidate OLF-related immunocyte infiltration landscape and immune-associated transcriptome signatures based on bioinformatic strategies and real-world data, which may provide compelling insights into the pathogenesis and therapeutic targets of OLF.
Collapse
Affiliation(s)
- Baoliang Zhang
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Guanghui Chen
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Xi Chen
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Xiaoxi Yang
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Tianqi Fan
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Chuiguo Sun
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Zhongqiang Chen
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| |
Collapse
|
4
|
Qu X, Hou X, Chen Z, Chen G, Fan T, Yang X. Association analysis and functional study of COL6A1 single nucleotide polymorphisms in thoracic ossification of the ligamentum flavum in the Chinese Han population. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 30:2782-2790. [PMID: 34287704 DOI: 10.1007/s00586-021-06932-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/09/2021] [Accepted: 07/14/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Genetic factors play a crucial role in thoracic ossification of the ligamentum flavum (TOLF). This study aimed to better understand the association between single nucleotide polymorphisms (SNP) in functional regions of the collagen VI, alpha 1 gene (COL6A1) and TOLF, and to confirm COL6A1 as a TOLF susceptibility gene. METHODS Ten tag SNPs in COL6A1 were genotyped using the SNaPshot assay, and allele and genotype frequencies were compared between TOLF patients and control individuals. The function of SNPs associated with disease was studied. For COL6A1 promoter SNPs, the transcriptional activity of each haplotype was determined by luciferase reporter assays. For COL6A1 exonic SNPs, the effect of nucleotide substitutions on COL6A1 expression was determined by western blotting. COL6A1 mRNA expression in ligamentum flavum tissues from TOLF patients with different genotypes was examined using reverse transcription real-time PCR. RESULTS Four SNPs were associated or possibly associated with TOLF, with higher pathogenic allele and genotype frequencies seen in TOLF patients compared with controls. The rs17551710/rs7671-GG/GG genotype appeared to be related to disease severity. Nucleotide substitutions at rs17551710 and rs7671 increased COL6A1 transcriptional activity and nucleotide substitutions at rs1053312 and rs13051496 increased COL6A1 protein expression. COL6A1 mRNA expression was significantly up-regulated in individuals with rs17551710/rs7671-GG/GG and rs1053312/rs13051496-AA+AG/CC genotypes compared with other genotypes. CONCLUSION SNPs in the COL6A1 promoter and exonic regions are associated with TOLF in the Chinese Han population, and lead to up-regulated COL6A1 expression. We confirmed COL6A1 as a TOLF susceptibility gene that may be involved in TOLF pathology.
Collapse
Affiliation(s)
- Xiaochen Qu
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China. .,Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, 116011, Liaoning, People's Republic of China. .,Department of Orthopaedics, Peking University Third Hospital, Beijing, People's Republic of China.
| | - Xiaofei Hou
- Department of Orthopedics, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhongqiang Chen
- Department of Orthopaedics, Peking University Third Hospital, Beijing, People's Republic of China.
| | - Guanghui Chen
- Department of Orthopaedics, Peking University Third Hospital, Beijing, People's Republic of China
| | - Tianqi Fan
- Department of Orthopaedics, Peking University Third Hospital, Beijing, People's Republic of China
| | - Xiaoxi Yang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, People's Republic of China
| |
Collapse
|
5
|
Zhang B, Chen G, Yang X, Fan T, Chen X, Chen Z. Dysregulation of MicroRNAs in Hypertrophy and Ossification of Ligamentum Flavum: New Advances, Challenges, and Potential Directions. Front Genet 2021; 12:641575. [PMID: 33912216 PMCID: PMC8075056 DOI: 10.3389/fgene.2021.641575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Pathological changes in the ligamentum flavum (LF) can be defined as a process of chronic progressive aberrations in the nature and structure of ligamentous tissues characterized by increased thickness, reduced elasticity, local calcification, or aggravated ossification, which may cause severe myelopathy, radiculopathy, or both. Hypertrophy of ligamentum flavum (HLF) and ossification of ligamentum flavum (OLF) are clinically common entities. Though accumulated evidence has indicated both genetic and environmental factors could contribute to the initiation and progression of HLF/OLF, the definite pathogenesis remains fully unclear. MicroRNAs (miRNAs), one of the important epigenetic modifications, are short single-stranded RNA molecules that regulate protein-coding gene expression at posttranscriptional level, which can disclose the mechanism underlying diseases, identify valuable biomarkers, and explore potential therapeutic targets. Considering that miRNAs play a central role in regulating gene expression, we summarized current studies from the point of view of miRNA-related molecular regulation networks in HLF/OLF. Exploratory studies revealed a variety of miRNA expression profiles and identified a battery of upregulated and downregulated miRNAs in OLF/HLF patients through microarray datasets or transcriptome sequencing. Experimental studies validated the roles of specific miRNAs (e.g., miR-132-3p, miR-199b-5p in OLF, miR-155, and miR-21 in HLF) in regulating fibrosis or osteogenesis differentiation of LF cells and related target genes or molecular signaling pathways. Finally, we discussed the perspectives and challenges of miRNA-based molecular mechanism, diagnostic biomarkers, and therapeutic targets of HLF/OLF.
Collapse
Affiliation(s)
- Baoliang Zhang
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| | - Guanghui Chen
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| | - Xiaoxi Yang
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| | - Tianqi Fan
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| | - Xi Chen
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| | - Zhongqiang Chen
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| |
Collapse
|
6
|
Non-coding RNAs in ossification of spinal ligament. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 30:801-808. [PMID: 33387048 DOI: 10.1007/s00586-020-06687-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Ossification of the spinal ligament (OSL) is a disease characterized by progressive ectopic ossification or calcification in the tissues of spinal ligament. The molecular pathogenesis of OSL has not been clearly elucidated. Recently, ncRNAs was found to functionally participate in OSL development. This review summarized current knowledge regarding the deregulation and function of ncRNAs in OSL METHODS: Relevant studies on deregulation and function of ncRNAs in OSL were retrieved from the PubMed databases. Then, studies were manually selected for inclusion based on predefined criteria. RESULT 14 studies were reviewed, with 4 studies about high throughput sequencing and microarray of ncRNAs, 8 studies relevant to the function of ncRNAs and 2 studies regarding the ncRNAs as the biomarker of OSL. CONCLUSION ncRNA play a vital role in the ossification of spinal ligament fibrocyte, including cell osteogenesis and inflammation. ncRNAs also have potential clinical utilities as therapeutic targets, risk predication and early detection in the management of OSL. LEVEL OF EVIDENCE I Diagnostic: individual cross-sectional studies with the consistently applied reference standard and blinding.
Collapse
|