Glucose enhances catecholamine-stimulated lipolysis via increased glycerol-3-phosphate synthesis in 3T3-L1 adipocytes and rat adipose tissue.
Mol Biol Rep 2021;
48:6269-6276. [PMID:
34374898 DOI:
10.1007/s11033-021-06617-1]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND
During lipolysis, triglyceride (TG) are hydrolyzed into a glycerol and fatty acids in adipocyte. A significant portion of the fatty acids are re-esterificated into TG, and this is a critical step in promoting lipolysis. Although glycerol-3-phosphate (G3P) is required for triglyceride synthesis in mammalian cell, the substrate for G3P synthesis during active lipolysis is not known. A recent study showed that the inhibition of glucose uptake reduces catecholamine-stimulated lipolysis, suggesting that glucose availability is important in lipolysis in adipocytes. We hypothesized that glucose might play an essential role in generating G3P and thereby promoting catecholamine-stimulated lipolysis in adipocytes. Therefore, we determined the effect of glucose availability on catecholamine-stimulated lipolysis in 3T3-L1 adipocytes and rat adipose tissue.
METHODS AND RESULTS
3T3-L1 adipocytes and rat epididymal fat pads were cultured in a medium with/without glucose during stimulation by isoproterenol. Glycerol release was higher when adipocytes were cultured in a glucose-containing medium than that in a medium without glucose. Measurement of glucose uptake during catecholamine-stimulated lipolysis showed a slight, but significant increase in glucose uptake. We also compared glucose metabolism-related protein, such as glucose transporter 4, hexokinase, glycerol-3-phosphate dehydrogenase and lipase contents between fat tissues that play a critical role in active lipolysis. Epididymal fat exhibited higher lipolytic activity than inguinal fat because of higher lipase and glucose metabolism-related protein contents.
CONCLUSION
We demonstrated that catecholamine-stimulated lipolysis is enhanced in the presence of glucose, and suggests that glucose is one of the primary substrates for G3P in adipocytes during active lipolysis.
Collapse