1
|
Cope H, Elsborg J, Demharter S, McDonald JT, Wernecke C, Parthasarathy H, Unadkat H, Chatrathi M, Claudio J, Reinsch S, Avci P, Zwart SR, Smith SM, Heer M, Muratani M, Meydan C, Overbey E, Kim J, Chin CR, Park J, Schisler JC, Mason CE, Szewczyk NJ, Willis CRG, Salam A, Beheshti A. Transcriptomics analysis reveals molecular alterations underpinning spaceflight dermatology. COMMUNICATIONS MEDICINE 2024; 4:106. [PMID: 38862781 PMCID: PMC11166967 DOI: 10.1038/s43856-024-00532-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/23/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Spaceflight poses a unique set of challenges to humans and the hostile spaceflight environment can induce a wide range of increased health risks, including dermatological issues. The biology driving the frequency of skin issues in astronauts is currently not well understood. METHODS To address this issue, we used a systems biology approach utilizing NASA's Open Science Data Repository (OSDR) on space flown murine transcriptomic datasets focused on the skin, biochemical profiles of 50 NASA astronauts and human transcriptomic datasets generated from blood and hair samples of JAXA astronauts, as well as blood samples obtained from the NASA Twins Study, and skin and blood samples from the first civilian commercial mission, Inspiration4. RESULTS Key biological changes related to skin health, DNA damage & repair, and mitochondrial dysregulation are identified as potential drivers for skin health risks during spaceflight. Additionally, a machine learning model is utilized to determine gene pairings associated with spaceflight response in the skin. While we identified spaceflight-induced dysregulation, such as alterations in genes associated with skin barrier function and collagen formation, our results also highlight the remarkable ability for organisms to re-adapt back to Earth via post-flight re-tuning of gene expression. CONCLUSION Our findings can guide future research on developing countermeasures for mitigating spaceflight-associated skin damage.
Collapse
Affiliation(s)
- Henry Cope
- School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
| | - Jonas Elsborg
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- Abzu, Copenhagen, 2150, Denmark
| | | | - J Tyson McDonald
- Department of Radiation Medicine, School of Medicine, Georgetown University, Washington D.C., WA, 20057, USA
| | - Chiara Wernecke
- NASA GeneLab For High Schools Program (GL4HS), Space Biology Program, NASA Ames Research Center, Moffett Field, CA, USA
- Department of Aerospace and Geodesy, TUM School of Engineering and Design, Technical University of Munich, Munich, Germany
| | - Hari Parthasarathy
- NASA GeneLab For High Schools Program (GL4HS), Space Biology Program, NASA Ames Research Center, Moffett Field, CA, USA
- College of Engineering and Haas School of Business, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Hriday Unadkat
- NASA GeneLab For High Schools Program (GL4HS), Space Biology Program, NASA Ames Research Center, Moffett Field, CA, USA
- School of Engineering and Applied Science, Princeton University, Princeton, NJ, 08540, USA
| | - Mira Chatrathi
- NASA GeneLab For High Schools Program (GL4HS), Space Biology Program, NASA Ames Research Center, Moffett Field, CA, USA
- College of Letters and Science, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jennifer Claudio
- NASA GeneLab For High Schools Program (GL4HS), Space Biology Program, NASA Ames Research Center, Moffett Field, CA, USA
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett field, CA, USA
| | - Sigrid Reinsch
- NASA GeneLab For High Schools Program (GL4HS), Space Biology Program, NASA Ames Research Center, Moffett Field, CA, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett field, CA, USA
| | - Pinar Avci
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337, Munich, Germany
| | - Sara R Zwart
- University of Texas Medical Branch, Galveston, TX, USA
| | - Scott M Smith
- Biomedical Research and Environmental Sciences Division, Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX, 77058, USA
| | - Martina Heer
- IU International University of Applied Sciences, Erfurt and University of Bonn, Bonn, Germany
| | - Masafumi Muratani
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Cem Meydan
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Eliah Overbey
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Jangkeun Kim
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Christopher R Chin
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Jiwoon Park
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, 10065, USA
| | - Jonathan C Schisler
- McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher E Mason
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, 10065, USA
| | - Nathaniel J Szewczyk
- School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Craig R G Willis
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Amr Salam
- St John's Institute of Dermatology, King's College London, Guy's and St Thomas' NHS Foundation Trust, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Afshin Beheshti
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett field, CA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
3
|
Odaka H, Hiemori K, Shimoda A, Akiyoshi K, Tateno H. Platelet-derived extracellular vesicles are increased in sera of Alzheimer's disease patients, as revealed by Tim4-based assays. FEBS Open Bio 2021; 11:741-752. [PMID: 33345458 PMCID: PMC7931225 DOI: 10.1002/2211-5463.13068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/18/2020] [Accepted: 12/18/2020] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by the accumulation of β‐amyloid plaques and the formation of neurofibrillary tangles. Extracellular vesicles (EVs) are small vesicles surrounded by a lipid bilayer membrane, which may be involved in the progression of AD. Glycans are essential building blocks of EVs, and we hypothesized that EV glycans may reflect pathological conditions of various diseases. Here, we performed glycan profiling of EVs prepared from sera of three AD patients (APs) compared to three healthy donors (HDs) using lectin microarray. Distinct glycan profiles were observed. Mannose‐binding lectins exhibited significantly higher signals for AP‐derived EVs than HD‐derived EVs. Lectin blotting using mannose‐binding lectin (rPALa) showed a single protein band at ~ 80 kDa exclusively in AP‐derived EVs. LC‐MS/MS analysis identified a protein band precipitated by rPALa as CD61, a marker of platelet‐derived exosomes (P‐Exo). Sandwich assays using Tim4 with specificity for phosphatidylserine on EVs and antibodies against P‐Exo markers (CD61, CD41, CD63, and CD9) revealed that P‐Exo is significantly elevated in sera of APs (n = 16) relative to age‐ and sex‐matched HDs (n = 16). Tim4‐αCD63 showed the highest value for the area under the curve (0.957) for discriminating APs from HDs, which should lead to a better understanding of AD pathology and may facilitate the development of a novel diagnostic method for AD.
Collapse
Affiliation(s)
- Haruki Odaka
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Keiko Hiemori
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Asako Shimoda
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Japan
| | - Hiroaki Tateno
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| |
Collapse
|