1
|
Zhou QY, Pan JQ, Liu W, Jiang ZT, Gao FY, Zhao ZW, Tang CK. Angiotensin II: A novel biomarker in vascular diseases. Clin Chim Acta 2025; 568:120154. [PMID: 39855324 DOI: 10.1016/j.cca.2025.120154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
The renin-angiotensin system (RAS), composed mainly of renin, angiotensin, and aldosterone, is a key endocrine pathway involved in cardiovascular activity regulation. Under physiological conditions, the RAS plays a vital role in water and salt metabolism, blood pressure regulation, and electrolyte balance. Angiotensin II (Ang II) is the most important active component of the RAS, and its receptors are concentrated in vascular, pulmonary, cardiac, and renal tissues in vivo. Moreover, Ang II is closely associated with the development of vascular lesions. Ang II expression is closely associated with atherosclerosis, aortic aneurysm/dissection, ischemic stroke, hypertension, pulmonary hypertension, and type 2 diabetes mellitus. Given the significant pathophysiological role of Ang II in vascular diseases and the availability of advanced detection methods, Ang II holds promise as a reliable biomarker and therapeutic target in clinical settings. This review summarizes the mechanisms through which Ang II contributes to different vascular diseases and discusses its potential application as a biomarker for disease diagnosis.
Collapse
Affiliation(s)
- Qin-Yi Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, PR China; The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang 421002 Hunan, PR China
| | - Jin-Qian Pan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, PR China
| | - Wang Liu
- The Affiliated Nanhua Hospital, Department of Gastrointestinal Surgery, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, China
| | - Zhen-Tao Jiang
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang 421002 Hunan, PR China
| | - Fang-Ya Gao
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang 421002 Hunan, PR China
| | - Zhen-Wang Zhao
- School of Basic Medicine, Health Science Center, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, PR China.
| |
Collapse
|
2
|
Nie X, Shi Y, Wang L, Abudureheman W, Yang J, Lin C. Study on the mechanism of magnesium calcium alloys/mineralized collagen composites mediating macrophage polarization to promote bone repair. Heliyon 2024; 10:e30279. [PMID: 38711636 PMCID: PMC11070863 DOI: 10.1016/j.heliyon.2024.e30279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
Magnesium-based composites are a focal point in biomaterials research. However, the rapid degradation rate of magnesium alloys does not align with the healing time of bone tissue. Additionally, the host reaction caused by magnesium implantation hampers its full osteogenic potential. To maintain an appropriate microenvironment, it is important to enhance both corrosion resistance and osteogenic activity of the magnesium matrix. In this study, a composite scaffold composed of mineralized collagen and magnesium alloy was utilized to investigate the regulatory effect of mineralized collagen on mouse macrophages and evaluate its impact on mouse bone marrow mesenchymal stem cells in terms of osteogenesis, immune response, and macrophage-induced osteogenic differentiation. This experiment examined the biocompatibility of mouse bone marrow mesenchymal stem cells and macrophage-induced osteogenic differentiation in vitro, and examined the expression levels of relevant pathways proteins. Magnesium calcium alloys/mineralized collagen exhibited extensive spreading, facilitated by broad and abundant pseudopodia that firmly adhered them to the material surface and promoted growth and pseudopodia formation. The findings revealed that magnesium calcium alloy/mineralized collagen scaffold materials induced osteogenic differentiation mainly through M2 polarization of macrophages. This effect was mainly mediated by promoting the integrin α2β1-FAK-ERK1/2 signaling pathways and inhibiting the RANK signaling pathways.
Collapse
Affiliation(s)
- Xiaojing Nie
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, 830000, PR China
| | - Yonghua Shi
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, 830000, PR China
| | - Lei Wang
- School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, 830000, PR China
| | - Wumidan Abudureheman
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, 830000, PR China
| | - Jingxin Yang
- Beijing Engineering Research Center of Smart Mechanical Innovation Design Service, Beijing Union University, No.4 Gongti North Road, Chaoyang District, Beijing, 100027, PR China
| | - Chen Lin
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, 830000, PR China
| |
Collapse
|
3
|
Shou X, Wang Y, Jiang Q, Chen J, Liu Q. miR-126 promotes M1 to M2 macrophage phenotype switching via VEGFA and KLF4. PeerJ 2023; 11:e15180. [PMID: 37020848 PMCID: PMC10069419 DOI: 10.7717/peerj.15180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Background
Macrophage polarization and microRNA play crucial roles in the development of atherosclerosis (AS). The M1 macrophage phenotype contributes to the formation of plaques, while the M2 macrophage phenotype resolves inflammation and promotes tissue repair. MiR-126 has been found to play a role in regulating macrophage polarization in the context of AS. However, the exact mechanism of miR-126 requires further research.
Methods
The foam cell model was established by stimulating THP-1 with oxidized low-density lipoprotein (ox-LDL). We transfected foam cells with miR-126 mimic and its negative control. The transfection of miR-126 was implemented by riboFECT CP transfection kit. The levels of miR-126 and M1/M2 associated genes in foam cells were quantified using reverse transcription-quantitative PCR (RT-qPCR). Additionally, the expressions of CD86+ and CD206+ cells in foam cells were determined by flow cytometry. Western blotting and RT-qPCR were used to determine the protein and mRNA levels of the vascular endothelial growth factor A (VEGFA) and the transcriptional regulator Krüppel-like factor 4 (KLF4), respectively. Additionally, we detected endothelial cell migration after co-culturing endothelial cells and macrophages. MG-132 was used to indirectly activate the expression of VEGFA, and the expression of KLF4 was also evaluated.
Results
The activation of apoptosis and production of foam cells were boosted by the addition of ox-LDL. We transfected foam cells with miR-126 mimic and its negative control and observed that miR-126 greatly suppressed foam cell development and inhibited phagocytosis. Moreover, it caused pro-inflammatory M1 macrophages to switch to the anti-inflammatory M2 phenotype. This was reflected by the increase in anti-inflammatory gene expression and the decrease in pro-inflammatory gene expression. Additionally, miR-126 dramatically decreased the expressions of VEGFA and KLF4. The protein-protein interaction network analysis showed a significantly high correlation between miR-126, VEGFA, and KLF4. MiR-126 may also promote EC migration by activating macrophage PPAR γ expression and effectively suppressing macrophage inflammation. MG-132 indirectly activated the expression of VEGFA, and the expression of KLF4 also significantly increased, which indicates a direct or indirect relationship between VEGFA and KLF4.
Conclusion
Our study shows that miR-126 can reverse ox-LDL-mediated phagocytosis and apoptosis in macrophages. Consequently, the potential role of miR-126 was manifested in regulating macrophage function and promoting vascular endothelial migration.
Collapse
Affiliation(s)
- Xinyang Shou
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Yimin Wang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingyu Jiang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun Chen
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiang Liu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Peña ME, Angeramo CA, Schlottmann F, Sadava EE. Losartan modifies mesh integration after abdominal wall repair: an experimental study. Hernia 2022; 26:937-944. [PMID: 34138370 DOI: 10.1007/s10029-021-02444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/10/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Angiotensin II (AT II) receptor blockers have previously shown to reduce inflammatory response in many settings. We aimed to assess the effects of ATII receptor blocker (Losartan) on mesh integration after abdominal wall repair in a rat model. METHODS A total of 16 Wistar-Kyoto (WKY) and 16 previously hypertensive (SHRSP) rats were isolated. An acute ventral hernia followed by a bridged repair with heavyweight polypropylene mesh was performed. Subjects received either normal saline (WKY-C n = 8 and SHRPS-C n = 8) or 40 mg/kg losartan (WKY-L n = 8) and SHRPS-L n = 8) in the postoperative period. Blood pressure was recorded preoperatively and weekly after surgery. Necropsy with en-bloc resection of the abdominal wall was performed at postoperative day 30. Macroscopic and microscopic evaluations of the specimens were conducted. H&E and Masson's trichrome were used for histologic evaluation. RESULTS Both groups receiving Losartan showed a significant reduction of blood pressure after surgery (WKY-L: 130/85 vs 116/81 mmHg, SHRPS-L: 176/137 vs 122/101 mmHg, p < 0.01). A significant reduction in mesh incorporation and adherence scores were also observed on macroscopic analysis in Losartan groups (p < 0.01 and p = 0.02, respectively). Microscopically, higher immature fibroplasia was observed after Losartan, with a significant reduction in scar plate formation and inflammatory response on the prosthetic surface (p = 0.04 and p = 0.02, respectively). CONCLUSION Losartan modifies the interaction between the host tissue and the prosthesis. An impairment in mesh integration and immature fibroplasia in both normotensive and hypertensive rats detected in our model warrants further research.
Collapse
Affiliation(s)
- M E Peña
- Department of Surgery, Hospital Alemán of Buenos Aires, Av. Pueyrredón 1640, 1118, Buenos Aires, CP, Argentina
| | - C A Angeramo
- Department of Surgery, Hospital Alemán of Buenos Aires, Av. Pueyrredón 1640, 1118, Buenos Aires, CP, Argentina
| | - F Schlottmann
- Department of Surgery, Hospital Alemán of Buenos Aires, Av. Pueyrredón 1640, 1118, Buenos Aires, CP, Argentina
| | - E E Sadava
- Department of Surgery, Hospital Alemán of Buenos Aires, Av. Pueyrredón 1640, 1118, Buenos Aires, CP, Argentina.
- Division of Abdominal Wall Surgery, Department of Surgery, Hospital Alemán of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Karakulak UN, Aladag E, Haznedaroğlu IC. Bone Marrow Origin of Coronary Artery Diseases: The Impact of the Local Renin-Angiotensin System. ACTA CARDIOLOGICA SINICA 2022; 38:13-20. [PMID: 35068878 PMCID: PMC8743471 DOI: 10.6515/acs.202201_38(1).20210830a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/30/2021] [Indexed: 01/24/2023]
Abstract
The renin-angiotensin system (RAS) has both important systemic circulatory and local effects. The effects of local cardiac RAS on the cardiovascular system have been increasingly researched. In this study, we review the relationship between local bone marrow and local cardiac RAS and their impacts on atherosclerosis.
Collapse
Affiliation(s)
| | - Elifcan Aladag
- Department of Hematology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | |
Collapse
|
6
|
Ouyang Y, Rong Y, Wang Y, Guo Y, Shan L, Yu X, Li L, Si J, Li X, Ma K. A Systematic Study of the Mechanism of Acacetin Against Sepsis Based on Network Pharmacology and Experimental Validation. Front Pharmacol 2021; 12:683645. [PMID: 34483900 PMCID: PMC8415621 DOI: 10.3389/fphar.2021.683645] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022] Open
Abstract
Sepsis is a dysregulated systemic response to infection, and no effective treatment options are available. Acacetin is a natural flavonoid found in various plants, including Sparganii rhizoma, Sargentodoxa cuneata and Patrinia scabiosifolia. Studies have revealed that acacetin potentially exerts anti-inflammatory and antioxidative effects on sepsis. In this study, we investigated the potential protective effect of acacetin on sepsis and revealed the underlying mechanisms using a network pharmacology approach coupled with experimental validation and molecular docking. First, we found that acacetin significantly suppressed pathological damage and pro-inflammatory cytokine expression in mice with LPS-induced fulminant hepatic failure and acute lung injury, and in vitro experiments further confirmed that acacetin attenuated LPS-induced M1 polarization. Then, network pharmacology screening revealed EGFR, PTGS2, SRC and ESR1 as the top four overlapping targets in a PPI network, and GO and KEGG analyses revealed the top 20 enriched biological processes and signalling pathways associated with the therapeutic effects of acacetin on sepsis. Further network pharmacological analysis indicated that gap junctions may be highly involved in the protective effects of acacetin on sepsis. Finally, molecular docking verified that acacetin bound to the active sites of the four targets predicted by network pharmacology, and in vitro experiments further confirmed that acacetin significantly inhibited the upregulation of p-src induced by LPS and attenuated LPS-induced M1 polarization through gap junctions. Taken together, our results indicate that acacetin may protect against sepsis via a mechanism involving multiple targets and pathways and that gap junctions may be highly involved in this process.
Collapse
Affiliation(s)
- Yuanshuo Ouyang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Yi Rong
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Yanming Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Yanli Guo
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Liya Shan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Xiushi Yu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Li Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
| | - Junqiang Si
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Xinzhi Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, China
| | - Ketao Ma
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
7
|
Moratal C, Laurain A, Naïmi M, Florin T, Esnault V, Neels JG, Chevalier N, Chinetti G, Favre G. Regulation of Monocytes/Macrophages by the Renin-Angiotensin System in Diabetic Nephropathy: State of the Art and Results of a Pilot Study. Int J Mol Sci 2021; 22:ijms22116009. [PMID: 34199409 PMCID: PMC8199594 DOI: 10.3390/ijms22116009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022] Open
Abstract
Diabetic nephropathy (DN) is characterized by albuminuria, loss of renal function, renal fibrosis and infiltration of macrophages originating from peripheral monocytes inside kidneys. DN is also associated with intrarenal overactivation of the renin-angiotensin system (RAS), an enzymatic cascade which is expressed and controlled at the cell and/or tissue levels. All members of the RAS are present in the kidneys and most of them are also expressed in monocytes/macrophages. This review focuses on the control of monocyte recruitment and the modulation of macrophage polarization by the RAS in the context of DN. The local RAS favors the adhesion of monocytes on renal endothelial cells and increases the production of monocyte chemotactic protein-1 and of osteopontin in tubular cells, driving monocytes into the kidneys. There, proinflammatory cytokines and the RAS promote the differentiation of macrophages into the M1 proinflammatory phenotype, largely contributing to renal lesions of DN. Finally, resolution of the inflammatory process is associated with a phenotype switch of macrophages into the M2 anti-inflammatory subset, which protects against DN. The pharmacologic interruption of the RAS reduces albuminuria, improves the trajectory of the renal function, decreases macrophage infiltration in the kidneys and promotes the switch of the macrophage phenotype from M1 to M2.
Collapse
Affiliation(s)
- Claudine Moratal
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France;
- Correspondence:
| | - Audrey Laurain
- Faculty of Medicine, Côte d’Azur University, 06107 Nice, France; (A.L.); (V.E.); (G.F.)
- Centre National de la Recherche Scientifique, UMR 7073, Laboratory of Physiology and Molecular Medicine (LP2M), 06107 Nice, France
- Nephrology, Dialysis and Transplantation Department, University Hospital, 06002 Nice, France;
| | - Mourad Naïmi
- Université Côte d’Azur, CHU, 06000 Nice, France;
| | - Thibault Florin
- Nephrology, Dialysis and Transplantation Department, University Hospital, 06002 Nice, France;
| | - Vincent Esnault
- Faculty of Medicine, Côte d’Azur University, 06107 Nice, France; (A.L.); (V.E.); (G.F.)
- Nephrology, Dialysis and Transplantation Department, University Hospital, 06002 Nice, France;
| | - Jaap G. Neels
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France;
| | - Nicolas Chevalier
- Université Côte d’Azur, CHU, INSERM, C3M, 06000 Nice, France; (N.C.); (G.C.)
| | - Giulia Chinetti
- Université Côte d’Azur, CHU, INSERM, C3M, 06000 Nice, France; (N.C.); (G.C.)
| | - Guillaume Favre
- Faculty of Medicine, Côte d’Azur University, 06107 Nice, France; (A.L.); (V.E.); (G.F.)
- Centre National de la Recherche Scientifique, UMR 7073, Laboratory of Physiology and Molecular Medicine (LP2M), 06107 Nice, France
- Nephrology, Dialysis and Transplantation Department, University Hospital, 06002 Nice, France;
| |
Collapse
|
8
|
Rodjakovic D, Salm L, Beldi G. Function of Connexin-43 in Macrophages. Int J Mol Sci 2021; 22:1412. [PMID: 33573367 PMCID: PMC7866802 DOI: 10.3390/ijms22031412] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Recent studies have helped to increase the understanding of the function of Connexin-43 (Cx43) in macrophages (Mφ). The various roles of Cx43 in Mφs range from migration, antigen-presentation and some forms of intercellular communication to more delicate processes, such as electrochemical support in the propagation of the heartbeat, immunomodulatory regulation in the lungs and in macrophage-differentiation. Its relevance in pathophysiology becomes evident in inflammatory bowel disease (IBD), tumours and HIV, in which aberrant functioning of Cx43 has been described. However, the involvement of Cx43 in other Mφ functions, such as phagocytosis and polarisation, and its involvement in other types of local and systemic inflammation, are still unclear and need further research.
Collapse
Affiliation(s)
- Daniel Rodjakovic
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (D.R.); (L.S.)
- Department for BioMedical Research (DBMR), Bern University Hospital, University of Bern, CH-3008 Bern, Switzerland
| | - Lilian Salm
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (D.R.); (L.S.)
- Department for BioMedical Research (DBMR), Bern University Hospital, University of Bern, CH-3008 Bern, Switzerland
| | - Guido Beldi
- Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (D.R.); (L.S.)
- Department for BioMedical Research (DBMR), Bern University Hospital, University of Bern, CH-3008 Bern, Switzerland
| |
Collapse
|
9
|
Linking ACE2 and angiotensin II to pulmonary immunovascular dysregulation in SARS-CoV-2 infection. Int J Infect Dis 2020; 101:42-45. [PMID: 32950735 PMCID: PMC7497736 DOI: 10.1016/j.ijid.2020.09.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 02/06/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the receptor of the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic. ACE2 has been shown to be down-regulated during coronaviral infection, with implications for circulatory homeostasis. In COVID-19, pulmonary vascular dysregulation has been observed resulting in ventilation perfusion mismatches in lung tissue, causing profound hypoxemia. Despite the loss of ACE2 and raised circulating vasoconstrictor angiotensin II (AngII), COVID-19 patients experience a vasodilative vasculopathy. This article discusses the interplay between the immune system and pulmonary vasculature and how SARS-CoV-2-mediated ACE2 disruption and AngII may contribute to the novel vascular pathophysiology of COVID-19.
Collapse
|
10
|
Predictors for the development of preoperative oxygenation impairment in acute aortic dissection in hypertensive patients. BMC Cardiovasc Disord 2020; 20:365. [PMID: 32778051 PMCID: PMC7416810 DOI: 10.1186/s12872-020-01652-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/04/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Acute aortic dissection (AAD) is an acute life-threatening cardiovascular disease, which is frequently complicated with oxygenation impairment (OI). We aim to investigate predictors of the development of OI in the patients with AAD. METHODS We retrospectively collected clinical data of AAD in hypertensive patients from July 2012 to March 2020. The patients included in this study were divided into OI (+) group (oxygenation index≤200) and OI (-) group (oxygenation index> 200). Both groups were compared according to demographic and clinical characteristics, and laboratory findings. Characteristics of hypertension in the patients with AAD were described. Predictors for the development of OI were assessed. And cutoff values were determined by receiver operating characteristics (ROC) curve. RESULTS A total of 208 patients were included in this study and the incidence of OI was 32.2%. In OI (+) group, patients had significantly higher peak body temperature (37.85 ± 0.60 vs 37.64 ± 0.44 °C, P = .005), higher levels of CRP (42.70 ± 28.27 vs 13.90 ± 18.70 mg/L, P = .000) and procalcitonin (1.07 ± 3.92 vs 0.31 ± 0.77μg/L, P = .027), and lower levels of albumin (34.21 ± 5.65 vs 37.73 ± 4.70 g/L, P = .000). Spearman's rank correlation test showed that the minimum oxygenation index was positively correlated with albumin, and was negatively correlated with the peak body temperature, serum CRP, procalcitonin, BNP and troponin. The stepwise multiple linear regression analysis showed that the peak body temperature, serum CRP and albumin were independently associated with development of OI. An optimal cutoff value for CRP for predicting OI was ≥9.20 mg/L, with a sensitivity of 91.0% and a specificity of 61.0%. CONCLUSIONS The peak body temperature, serum CRP and albumin were independent predictors of OI development in the patients with AAD. The serum CRP on admission≥9.20 mg/L might be a valuable and reliable indicator in predicting the development of OI.
Collapse
|
11
|
Evaluation of Anti-Inflammatory and Atheroprotective Properties of Wheat Gluten Protein Hydrolysates in Primary Human Monocytes. Foods 2020; 9:foods9070854. [PMID: 32630013 PMCID: PMC7404777 DOI: 10.3390/foods9070854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/12/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Bioactive protein hydrolysates have been identified in several sources as possible agents in the prevention and treatment of many diseases. A wheat gluten (WG) concentrate was hydrolyzed by Alcalase under specific conditions. The resulting hydrolysates were evaluated by in vitro cell-free experiments leading to the identification of one bioactive WG protein hydrolysate (WGPH), which was used at 50 and 100 μg/mL on primary human monocytes. Reactive oxygen species (ROS) and nitrite levels and RT-qPCR and ELISA techniques were used to analyze the functional activity of WGPH. Our results showed that WGPH hydrolyzed in 45 min (WGPH45A) down-regulated gene expression of Interleukin (IL)-1β, IL-6, IL-17, and Interferon gamma (IFNγ) and reduced cytokine release in lipopolysaccharide (LPS)-stimulated monocytes. In addition, WGPH45A down-regulated gene-related to atherosclerotic onset. Our results suggest that WGPH45A has a potent anti-inflammatory and atheroprotective properties, reducing the expression of gene-related inflammation and atherosclerosis that could be instrumental in maintaining cardiovascular homeostasis.
Collapse
|