1
|
Zheng X, Chen D, Li M, Liao J, He L, Chen L, Xu R, Zhang M. Calycosin (CA) inhibits proliferation, migration and invasion by suppression of CXCL10 signaling pathway in glioma. Aging (Albany NY) 2024; 16:4191-4203. [PMID: 38461458 PMCID: PMC10968673 DOI: 10.18632/aging.205572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/13/2023] [Indexed: 03/12/2024]
Abstract
Glioblastoma is the most common malignant tumor in the central nervous system and its occurrence and development is involved in various molecular abnormalities. C-X-C chemokine ligand 10 (CXCL10), an inflammatory chemokine, has been reported to be related to the pathogenesis of cancer while it has not yet been linked to glioma. Calycosin, a bioactive compound derived from Radix astragali, has demonstrated anticancer properties in several malignancies, including glioma. Nonetheless, its underlying mechanisms are not fully understood. This study explores CXCL10 as a potential therapeutic target for calycosin in the suppression of glioblastoma. We observed that CXCL10 expression correlates positively with glioma malignancy and inversely with patient prognosis, highlighting its potential as a glioblastoma treatment target. Furthermore, we found that calycosin inhibited proliferation, migration, and invasion in U87 and U251 glioma cells, and decreased CXCL10 expression in a dose-dependent manner, along with its downstream effectors such as NLRP3, NF-κB, and IL-1β. Additionally, molecular docking experiments demonstrated that calycosin exhibits a notable binding affinity to CXCL10. Overexpression of CXCL10 counteracted the inhibitory effects of calycosin on cell proliferation, migration, and invasion, while CXCL10 knockdown enhanced these effects. Finally, we verified that calycosin inhibited glioma growth in a xenograft mouse model and downregulated CXCL10 and its downstream molecules. These findings suggest that targeting CXCL10 may be an effective strategy in glioblastoma treatment, and calycosin emerges as a potential therapeutic agent.
Collapse
Affiliation(s)
- Xiaoyu Zheng
- Department of Intensive-Care Unit, Affiliated First Hospital, Jinan University, Guangzhou 510630, China
- Department of Neurosurgery, Affiliated Shunde Hospital, Jinan University, Shunde, Foshan 528000, China
| | - Danmin Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Menghui Li
- Department of Neurosurgery, Affiliated First Hospital, Jinan University, Guangzhou 510630, China
| | - Jianchen Liao
- Department of Neurosurgery, Affiliated First Hospital, Jinan University, Guangzhou 510630, China
| | - Liqun He
- Department of Neurosurgery, Affiliated First Hospital, Jinan University, Guangzhou 510630, China
| | - Lu Chen
- Department of Neurosurgery, Affiliated First Hospital, Jinan University, Guangzhou 510630, China
| | - Rong Xu
- Department of Operating Room, Guangzhou Tianhe Longdong Hospital, Guangzhou 510520, China
| | - Maoying Zhang
- Department of Neurosurgery, Affiliated Shunde Hospital, Jinan University, Shunde, Foshan 528000, China
- Department of Neurosurgery, Affiliated First Hospital, Jinan University, Guangzhou 510630, China
| |
Collapse
|
2
|
Chen L, Zhou Y, Weng Z, Liu S, Li T, Wang Y, Yang Y, Liu H, Huang W. Anti-cancer targets and molecular mechanisms of formononetin in treating osteosarcoma based on network pharmacology. Aging (Albany NY) 2023; 15:11489-11507. [PMID: 37870753 PMCID: PMC10637808 DOI: 10.18632/aging.205139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023]
Abstract
Osteosarcoma (OS) is a multifactorial bone malignancy that accounts for most cancers in children and adolescents. Formononetin has been proven to exhibit various pharmacological effects including anti-tumor, anti-obesity, anti-inflammation, and neuroprotective effects. Few studies have examined the pharmacological activities of formononetin in OS treatment, but the mechanism has not yet been completely elucidated. Network pharmacology is a new method based on the theory of system biology for analyzing the network of biological systems and selecting specific signal nodes for multi-target drug molecular design. Here, we used network pharmacology to explore the possible mechanism of formononetin in OS treatment. Human OS cell line MG63 was processed with four concentrations (0, 2, 5, 8 μg/mL) of formononetin. Subsequently, an MTT assay was performed to test cell proliferation and a scratch test was used to evaluate the migration ability of cancer cells. Caspase-3, p53, p21, and bcl-2 expression levels incubated with different concentrations of formononetin in MG63 cells were determined using Western blotting. After treated with formononetin for 48 h, MG63 cells exhibited marked apoptosis. The results revealed that certain concentrations of formononetin significantly exerted inhibitory effects on MG63 cell proliferation. Furthermore, formononetin decreased the bcl-2 level in MG63 cells but increased caspase-3, p21, and p53 levels in a concentration-dependent manner. Additionally, formononetin suppressed the expression of SATB2. Therefore, formononetin could dose-dependently inhibit MG63 cell proliferation and induce apparent cell apoptosis, providing a candidate treatment for OS, whereas SATB2 could be a potential prognostic biomarker for screening OS and therapeutic target of formononetin.
Collapse
Affiliation(s)
- Lizhi Chen
- Department of Science and Education, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yue Zhou
- Department of Science and Education, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Zheng Weng
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Shuang Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Ting Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanfang Wang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yang Yang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongmei Liu
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial, General Hospital, Guangzhou, Guangdong, China
- Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Guo X, Pan X, Wu J, Li Y, Nie N. Calycosin prevents IL-1β-induced articular chondrocyte damage in osteoarthritis through regulating the PI3K/AKT/FoxO1 pathway. In Vitro Cell Dev Biol Anim 2022; 58:491-502. [PMID: 35705795 DOI: 10.1007/s11626-022-00694-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022]
Abstract
Osteoarthritis (OA) is a joint disorder that is associated with chondrocyte damage under inflammatory environment. Calycosin is an astragalus extract with potential anti-inflammatory and anti-tumor activities. The purpose of this research is to explore the activity and mechanism of calycosin in interleukin-1beta (IL-1β)-induced chondrocyte injury. In the present study, the targets of calycosin and OA were analyzed according to HERB, DisGeNet, String, GO terms, and KEGG pathway enrichment assays. Human primary chondrocytes were treated with calycosin, and stimulated with IL-1β. Cell viability was detected by CCK-8 assay. Cell apoptosis was investigated by flow cytometry, and caspase-3 activity analyses. Inflammation was analyzed according to inflammatory cytokines levels by enzyme-linked immunosorbent assay (ELISA). The proteins associated with extracellular matrix (ECM) degradation and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/forkhead box O1 (FoxO1) signaling pathways were measured using Western blotting. The results showed that total of 25 overlapping targets of calycosin against OA were predicted. These targets might drive the FoxO pathway. Calycosin alone induced little cytotoxicity to chondrocytes, and it alleviated IL-1β-induced viability inhibition, cell apoptosis, inflammatory cytokine secretion, and ECM degradation in chondrocytes. Calycosin repressed IL-1β-induced activation of the PI3K/AKT/FoxO1 signaling. Activation of the PI3K/AKT/FoxO1 signaling mitigated the suppressive effect of calycosin on chondrocyte apoptosis, inflammation, and ECM degradation induced by IL-1β. As a conclusion, calycosin prevents IL-1β-induced chondrocyte apoptosis, inflammation, and ECM degradation through inactivating the PI3K/AKT/FoxO1 pathway.
Collapse
Affiliation(s)
- Xiang Guo
- School of medicine, Shaoxing University, Zhejiang, 312000, Shaoxing, China.
| | - Xiaoyu Pan
- Department of Clinical Medicine, The Medical College of Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Jianhong Wu
- School of medicine, Shaoxing University, Zhejiang, 312000, Shaoxing, China
| | - Yuanzhou Li
- Shaoxing Geke Biological Technology Co. Ltd, Shaoxing, 312000, Zhejiang, China
| | - Na Nie
- Trauma Joint Surgery, the Third Affiliated Hospital of Chongqing Medical University, Chongqing, 404100, China
| |
Collapse
|
4
|
Song Y, Li X, Liu X, Yu Z, Zhang G. Calycosin Alleviates Oxidative Injury in Spinal Astrocytes by Regulating the GP130/JAK/STAT Pathway. J Oleo Sci 2022; 71:881-887. [PMID: 35584953 DOI: 10.5650/jos.ess21174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spinal injury is a complicated disease and is reported to be associated with damages on spinal astrocytes induced by oxidative injury. Astragali Radi, a famous traditional Chinese medicine, is reported to have promising efficacy in protecting injuries in the central nervous system. This study aims to investigate the effect of calycosin, an isoflavone phytoestrogens isolated from Astragali Radi, on oxidative injury in spinal astrocytes induced by H2O2 and the underlying mechanism. Primary rat spinal astrocytes were pretreated with 5, 10, and 20 μM calycosin and subjected to H2O2 treatment for 24 h to establish an oxidative injury model. Cell viability was detected using the CCK-8 assay to screen the optimized concentration of calycosin. Flow cytometry was used to evaluate the apoptotic rate and cell cycle. The expression level of Brdu was visualized using the immunofluorescence assay. Western blotting was used to measure the expression levels of p-JAK2, p-STAT3, p-AKT, GP130, and IL-6 in spinal astrocytes. We found that proliferation was inhibited and that apoptosis was induced by the stimulation of H2O2. The expression levels of p-JAK2, p-STAT3, p-AKT, GP130, and IL-6 were significantly elevated in H2O2-treated astrocytes. After the treatment of calycosin, proliferation was facilitated, and apoptosis was suppressed. These phenomena were accompanied by the downregulation of p-JAK2, p-STAT3, p-AKT, GP130, and IL-6, which were abolished by the co-administration of PI3K (ly294002) or STAT3 (stattic) inhibitor. Overall, calycosin alleviated oxidative injury in spinal astrocytes by mediating the GP130/JAK/STAT pathway.
Collapse
Affiliation(s)
- Yingjun Song
- Department of traumatic orthopedics, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine
| | - Xu Li
- Department of traumatic orthopedics, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine
| | - Xiaozhou Liu
- Jiangxi University of Traditional Chinese Medicine
| | - Zhaozhong Yu
- Department of traumatic orthopedics, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine
| | - Guofu Zhang
- Department of traumatic orthopedics, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine
| |
Collapse
|
5
|
Gong G, Zheng Y, Yang Y, Sui Y, Wen Z. Pharmaceutical Values of Calycosin: One Type of Flavonoid Isolated from Astragalus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:9952578. [PMID: 34035829 PMCID: PMC8121564 DOI: 10.1155/2021/9952578] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 11/25/2022]
Abstract
Astragalus is a popular Materia Medica in China, and it could be applied in the treatment of various diseases. It contains a variety of chemically active ingredients, such as saponins, flavonoids, and polysaccharides. Plant-derived bioactive chemicals are considered natural, safe, and beneficial. Among the infinite plant-identified and isolated molecules, flavonoids have been reported to have positive effects on human health. Calycosin is the most important active flavonoid substance identified predominantly within this medicinal plant. In recent years, calycosin has been reported to have anticancer, antioxidative, immune-modulatory, and estrogenic-like properties. This review collected recent relevant literatures on calycosin and summarized its potential pharmaceutical properties and working mechanism involved, which provided solid basis for future clinical research.
Collapse
Affiliation(s)
- Guowei Gong
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, China
| | - Yuzhong Zheng
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, China
| | - Yang Yang
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai, Guangdong 519041, China
| | - Yixuan Sui
- Department of Neuroscience, City University of Hong Kong, Hong Kong 999077, China
| | - Zhen Wen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
6
|
Ding X, Lv J, Luan J, Zhang J. Calycosin may Alleviate Ang II-Induced Pro-proliferative Effects on Glomerular Mesangial Cells via Partially Inhibiting Autophagy and ERK Signaling Pathway. Biol Pharm Bull 2020; 43:1893-1898. [DOI: 10.1248/bpb.b20-00520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xiaohuan Ding
- Department of Integrated Traditional and Western Medicine, Liaoning University of Traditional Chinese Medicine
| | - Jing Lv
- Department of Nephrology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine
| | - Jia Luan
- Department of Integrated Traditional and Western Medicine, Liaoning University of Traditional Chinese Medicine
| | - Jun Zhang
- Department of Pediatrics, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine
| |
Collapse
|