1
|
Anastasiadou DP, Couturier N, Goel S, Argyris DG, Vodopyanov S, Rivera-Sanchez L, Gonzalez E, Kreger J, Griffen A, Kazakov A, Burt J, Recoder N, Duran CL, Harney AS, Quesnel A, Filippou PS, Lenis VP, Shukla S, Entenberg D, Zintiridou A, Chen X, Eddy RJ, Oktay MH, Condeelis JS, Karagiannis NS, Briceno A, Guzik H, Alon R, DesMarais V, Ioannou G, Gnjatic S, Raynolds DM, Macedo R, Reshef R, Gil-Henn H, MacLean AL, Torres ER, LaFave LM, Lauvau G, Karagiannis GS. Intratumoral CXCL12 Gradients Contextualize Tumor Cell Invasion, Migration and Immune Suppression in Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618571. [PMID: 39464015 PMCID: PMC11507869 DOI: 10.1101/2024.10.15.618571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Although the CXCL12/CXCR4 pathway has been prior investigated for its prometastatic and immuno- suppressive roles in the tumor microenvironment, evidence on the spatiotemporal regulation of these hallmarks has been lacking. Here, we demonstrate that CXCL12 forms a gradient specifically around cancer cell intravasation doorways, also known as Tumor Microenvironment of Metastasis (TMEM) doorways, thus facilitating the chemotactic translocation of prometastatic tumor cells expressing CXCR4 toward the perivascular TMEM doorways for subsequent entry into peripheral circulation. Fur- thermore, we demonstrate that the CXCL12-rich micro-environment around TMEM doorways may cre- ate immunosuppressive niches, whereby CD8 + T cells, despite being attracted to these regions, often exhibit reduced effector functions, limiting their efficacy. While the CXCL12/CXCR4 pathway can mini- mally influence the overall composition of immune cell populations, it biases the distribution of CD8 + T cells away from TMEM doorways, justifying its prior-established role as immunosuppressive factor for CD8 + T cells. Our research suggests that the complex interactions between CXCL12 and the various tumor and immune cell types contributes not only to the completion of the initial steps of the metastatic cascade, but also offers an immunological "sanctuary" to prometastatic tumor cells homed around TMEM doorways. Overall, our study enhances our current understanding on the mechanisms, via which CXCL12 orchestrates tumor cell behavior and immune dynamics, potentially guiding future thera- peutic strategies to combat breast cancer metastasis and improve anti-tumor immunity.
Collapse
|
2
|
Wu Y, Zhang Z, Sun X, Wang J, Shen H, Sun X, Wang Z. Stromal cell-derived factor-1 downregulation contributes to neuroprotection mediated by CXC chemokine receptor 4 interactions after intracerebral hemorrhage in rats. CNS Neurosci Ther 2024; 30:e14400. [PMID: 37614198 PMCID: PMC10848108 DOI: 10.1111/cns.14400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023] Open
Abstract
AIM Stromal cell-derived factor-1 (SDF-1) and CXC chemokine receptor 4 (CXCR4) have a substantial role in neuronal formation, differentiation, remodeling, and maturation and participate in multiple physiological and pathological events. In this study, we investigated the role of SDF-1/CXCR4 in neural functional injury and neuroprotection after intracerebral hemorrhage (ICH). METHODS Western blot, immunofluorescence and immunoprecipitation were used to detect SDF-1/CXCR4 expression and combination respectively after ICH. TUNEL staining, Lactate dehydrogenase assay, Reactive oxygen species assay, and Enzyme-linked immunosorbent assay to study neuronal damage; Brain water content to assay brain edema, Neurological scores to assess short-term neurological deficits. Pharmacological inhibition and genetic intervention of SDF-1/CXCR4 signaling were also used in this study. RESULTS ICH induced upregulation of SDF-1/CXCR4 and increased their complex formation, whereas AMD3100 significantly reduced it. The levels of TNF-α and IL-1β were significantly reduced after AMD3100 treatment. Additionally, AMD3100 treatment can alleviate neurobehavioral dysfunction of ICH rats. Conversely, simultaneous SDF-1/CXCR4 overexpression induced the opposite effect. Moreover, immunoprecipitation confirmed that SDF-1/CXCR4 combined to initiate neurodamage effects. CONCLUSION This study indicated that inhibition of SDF-1/CXCR4 complex formation can rescue the inflammatory response and alleviate neurobehavioral dysfunction after ICH. SDF-1/CXCR4 may have applications as a therapeutic target after ICH.
Collapse
Affiliation(s)
- Yu Wu
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySu ZhouChina
| | - Zhuwei Zhang
- Department of NeurosurgeryLinyi People's HospitalLinyiChina
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySu ZhouChina
| | - Jing Wang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySu ZhouChina
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySu ZhouChina
| | - Xue Sun
- Department of Emergency MedicineThe First Affiliated Hospital of Soochow UniversitySu ZhouChina
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySu ZhouChina
| |
Collapse
|
3
|
Kadir RRA, Alwjwaj M, Rakkar K, Othman OA, Sprigg N, Bath PM, Bayraktutan U. Outgrowth Endothelial Cell Conditioned Medium Negates TNF-α-Evoked Cerebral Barrier Damage: A Reverse Translational Research to Explore Mechanisms. Stem Cell Rev Rep 2023; 19:503-515. [PMID: 36056287 PMCID: PMC9902316 DOI: 10.1007/s12015-022-10439-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 02/07/2023]
Abstract
Improved understanding of the key mechanisms underlying cerebral ischemic injury is essential for the discovery of efficacious novel therapeutics for stroke. Through detailed analysis of plasma samples obtained from a large number of healthy volunteers (n = 90) and ischemic stroke patients (n = 81), the current study found significant elevations in the levels of TNF-α at baseline (within the first 48 h of stroke) and on days 7, 30, 90 after ischaemic stroke. It then assessed the impact of this inflammatory cytokine on an in vitro model of human blood-brain barrier (BBB) and revealed dramatic impairments in both barrier integrity and function, the main cause of early death after an ischemic stroke. Co-treatment of BBB models in similar experiments with outgrowth endothelial cell-derived conditioned media (OEC-CM) negated the deleterious effects of TNF-α on BBB. Effective suppression of anti-angiogenic factor endostatin, stress fiber formation, oxidative stress, and apoptosis along with concomitant improvements in extracellular matrix adhesive and tubulogenic properties of brain microvascular endothelial cells and OECs played an important role in OEC-CM-mediated benefits. Significant increases in pro-angiogenic endothelin-1 and monocyte chemoattractant protein-1 in OEC-CM compared to the secretomes of OEC and HBMEC, detected by proteome profiling assay, accentuate the beneficial effects of OEC-CM. In conclusion, this reverse translational study identifies TNF-α as an important mediator of post-ischemic cerebral barrier damage and proposes OEC-CM as a potential vasculoprotective therapeutic strategy by demonstrating its ability to regulate a wide range of mechanisms associated with BBB function. Clinical trial registration NCT02980354.
Collapse
Affiliation(s)
- Rais Reskiawan A Kadir
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Mansour Alwjwaj
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Kamini Rakkar
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Othman Ahmad Othman
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Nikola Sprigg
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Philip M Bath
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Ulvi Bayraktutan
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK.
| |
Collapse
|
4
|
Atypical Roles of the Chemokine Receptor ACKR3/CXCR7 in Platelet Pathophysiology. Cells 2022; 11:cells11020213. [PMID: 35053329 PMCID: PMC8773869 DOI: 10.3390/cells11020213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/23/2022] Open
Abstract
The manifold actions of the pro-inflammatory and regenerative chemokine CXCL12/SDF-1α are executed through the canonical GProteinCoupledReceptor CXCR4, and the non-canonical ACKR3/CXCR7. Platelets express CXCR4, ACKR3/CXCR7, and are a vital source of CXCL12/SDF-1α themselves. In recent years, a regulatory impact of the CXCL12-CXCR4-CXCR7 axis on platelet biogenesis, i.e., megakaryopoiesis, thrombotic and thrombo-inflammatory actions have been revealed through experimental and clinical studies. Platelet surface expression of ACKR3/CXCR7 is significantly enhanced following myocardial infarction (MI) in acute coronary syndrome (ACS) patients, and is also associated with improved functional recovery and prognosis. The therapeutic implications of ACKR3/CXCR7 in myocardial regeneration and improved recovery following an ischemic episode, are well documented. Cardiomyocytes, cardiac-fibroblasts, endothelial lining of the blood vessels perfusing the heart, besides infiltrating platelets and monocytes, all express ACKR3/CXCR7. This review recapitulates ligand induced differential trafficking of platelet CXCR4-ACKR3/CXCR7 affecting their surface availability, and in regulating thrombo-inflammatory platelet functions and survival through CXCR4 or ACKR3/CXCR7. It emphasizes the pro-thrombotic influence of CXCL12/SDF-1α exerted through CXCR4, as opposed to the anti-thrombotic impact of ACKR3/CXCR7. Offering an innovative translational perspective, this review also discusses the advantages and challenges of utilizing ACKR3/CXCR7 as a potential anti-thrombotic strategy in platelet-associated cardiovascular disorders, particularly in coronary artery disease (CAD) patients post-MI.
Collapse
|
5
|
Xu J, Li X, Zhou S, Wang R, Wu M, Tan C, Chen J, Wang Z. Inhibition of CXCR4 ameliorates hypoxia-induced pulmonary arterial hypertension in rats. Am J Transl Res 2021; 13:1458-1470. [PMID: 33841670 PMCID: PMC8014346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Pulmonary vascular remodeling due to aberrant proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) is the main characteristic of pulmonary arterial hypertension (PAH). CXCR4 is a specific stem cell surface receptor of cytokine CXCL12 which could regulate homing of hematopoietic progenitor cells and their mobilization. There is evidence that bone marrow-derived CXCR4 proangiogenic cell accumulation take an important part in the development of pulmonary arterial hypertension; however, the underlying mechanisms still remain unknown. Here, we explored the expression profile of CXCR4 both in hypoxia rats and PAH patients by measuring proliferation and migration of PASMCs. We performed western blot analysis to detect downstream molecules. We demonstrated that CXCR4 expression level was increased in both rats exposed to chronic hypoxia and PAH patients in reconstructed pulmonary arterioles. The inhibition of CXCR4 expression slowed down the process of hypoxic-PAH by reducing the mean right ventricular systolic pressure, right ventricular hypertrophy, and pulmonary vascular remodeling in vivo experimental mode. CXCR4 overexpression and inhibition regulated the cell growth of PASMCs in hypoxia condition, which are the critical cellular events in vascular disease. Furthermore, activation of β-catenin signaling and upregulation of CXCR4 could be blocked by AMD3100 both in vivo and vitro. Taken together, inhibition of CXCR4 expression could downregulate β-catenin, reduced pulmonary artery smooth muscle cell proliferation, and ameliorated pulmonary vascular remodeling in hypoxia rats. These findings suggest that CXCL12/CXCR4 is critical in driving PAH and uncover a correlation between β-catenin dependent signaling.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Anesthesiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical UniversityWuxi, Jiangsu Province, China
| | - Xiangnan Li
- Department of Anesthesiology, The Third People’s Hospital of YanchengYancheng, Jiangsu Province, China
| | - Siqi Zhou
- Department of Digestive Internal Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjing, Jiangsu Province, China
| | - Rui Wang
- Department of Anesthesiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical UniversityWuxi, Jiangsu Province, China
| | - Mengxi Wu
- Department of Anesthesiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical UniversityWuxi, Jiangsu Province, China
| | - Cheng Tan
- Department of Anesthesiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical UniversityWuxi, Jiangsu Province, China
| | - Jingyu Chen
- Department of Lung Transplant Group, The Affiliated Wuxi People’s Hospital of Nanjing Medical UniversityWuxi, Jiangsu Province, China
- Department of Jiangsu Key Laboratory of Organ Transplantation, The Affiliated Wuxi People’s Hospital of Nanjing Medical UniversityWuxi, Jiangsu Province, China
| | - Zhiping Wang
- Department of Anesthesiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical UniversityWuxi, Jiangsu Province, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu Province, China
| |
Collapse
|